Promise Winter School
Bridging between Information Retrieval and Databases

Bressanone, Italy 4 - 8 February 2013

The Keyword Search on Relational
Databases

Prof. Sonia Bergamaschi
Ing. Giovanni Simonini, Ing. Silvia Rota, PhD Francesco Guerra

Dipartimento di Ingegneria “Enzo Ferrari”
University of Modena and Reggio Emilia, Italy

Outline

» Motivation
» Keyword Search Goal

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» Keyword Search Systems Overview
Indexing
Data Representation Model

>

>

» Schema-based Approach
» Graph-based Approach
>

Comparison of the Systems

Keyword Queries

» popular in recent years thanks to web search
engines and their easy query interface for any
kind of user

» difficult to express complex queries

» Actually does not work for retrieving data from
databases publicly available on the web; a
keyword search interface might be useful

» No research prototypes have transitioned from
proof-of-concept implementations into
deployed systems [TKDE2012]

o
E
c
>
®
Q
>
o
—
O
(aa)
o

> 3 Motivation

Main Issues

» Traditional query techniques based on structured query languages (SQL)
are being day-by-day proven limited in highly heterogeneous
environments:

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» they require a complete knowledge of the underlying data
structures and instances.

» Solving a query requires addressing a number of critical tasks
concerning structural and lexical aspects:

1. the user selects the tables and attributes target of a query on the basis of
their names, which may be misleading or not meaningful (lexical aspect);

Addresses of the
professors with a
research interest
in database?

p 4 Motivation

Main Issues (2)

2. the user expresses conditions on attributes without having accurate
knowledge of the domain. Thus, s/he may define over selective or, vice-
versa, too broad or illegal selection clauses (lexical aspect);

o
E
c
>
®
Q
>
o
S
O
(aa)
o

Professors

Professors in the
area of
information

Name Area Email Address

3. the user does not know the relationships between the tables and,
consequently, it is hard to pose multi-table queries (structural and lexical

aSpECt)' Cities Professors
Professors living City | Country Name

i ?

WERGITCE Rome | Italy Watson
Milan | Italy Date
Paris | France Hunt
Berlin | Germany Bill
Lion France Tan

» 5 Motivation

Keyword Search Approch

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» A database can be viewed as a data graph G(V, E),
where V is a set of tuples, and E is a set of a
connections between tuples. A connection between
two tuples exists if there is at least one reference
from one of the tuples to the other one.

» A l-keyword query Q is a set of [keywords
Q=1{ky, k,, ..., k;}

» The result to be returned is a set of connected sub-
graphs

R ={R,(V, E), R,(V, E), ..., R_(V, E)}

» 6 Motivation

o TID Tite Ly | A1 | 1T TID PID1 PID2

E B TID Name w a

£ lam T — | Coneibutions of Michelle L R ci | p2 | P

el | h— K d h in XML 2 p3 p1

2 | e | L || e i 2 D B EA

= . ' : Algorithms for TopK Query || s | a3 D4 C4 p3 pa

e (a) Author we e P Cs P2 D4
(b) Paper

O _ (d) Cite

(an] (c) Write

()

a

w10 wQQ

P11(P2C

C1 C200

Q = {Michael, XML}

> 7 Motivation

o
E
c
>
®
Q
>
o
S
O
(aa)
o

TID Name

Michael Richardson

TID Title

(a) Author

a

wiQO

P1(

TID AID PID

TID PID1 PID2
w1 ai P1

s, .

(b) Paper

C5 P2 P4

(d) Cite

Q = {Michael, XML}

Motivation

Hidden Web

» The web is bigger than it looks

» Beyond the billions of pages that populate the major search engines, lies
an even vaster hidden web of data:

Classified ads

Library

Catalogs

Airlines reservation systems
Scientific databases

o
E
c
>
®
Q
>
o
—
O
(aa)
o

generally, dynamic contents and their underlying

databases

» Hidden (or “Deep”) Web size is estimated at up to 500 times larger than the
Surface Web of static HTML pages [Alex Wright: Searching the deep web. Commun. ACM 51
(10):14-15 (2008)]

» The deep Web contains 7,500 TB of information compared to 19 TB of

information in the surface WEb[Bergman, K. T. (2001). The deep web: surfacing hidden value.
The Journal of Electronic Publishing 7. http://dx.doi.org/10.3998/3336451.0007.104]

b 9 Hidden Web

Searching the Hidden Web

Classical search engines are not able to query the
hidden web (and RDBs on Web)

» Is it possible to integrate in the same platform
both database and information retrieval
techniques?

» the sophisticated DB facilities provided by a DBMS

assist users to query well-structured information
using a structured query language

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» IR techniques allow users to search unstructured
information using keywords with a simple language

D 10 Hidden Web

Keyword Search Goal

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» Querying publicly available RDBs on the
Web with keyword queries

» without knowing DBs schema

b 11 Keyword Search Goal

Web Pages vs Databases

» In the following table the most important differences between
a web page and a database are listed:

o
E
c
>
®
Q
>
o
S
O
(aa)
o

Web Page Database
Type Flat Document Structured data
Access Through URL Through DBMS
Previous knowledge None Data structure
Relations between data Hyperlinks Foreign keys
Output Flat document (partial/total) Tuples

b 12 Keyword Search Goal

Keyword Search vs Classical Search Engine

Traditional IR techniques consider textual documents as "bags of
words": each keyword present in the documents is indexed

separately and the semantics represented by the order of the words
and phrases in the text is completely lost

At query time the index is used to retrieve all documents that
contain the keywords in the query

The difficulties in accessing structured data with classical search
engines are:

» The crawling of structured data is not possible because querying
databases requires to have knowledge of the schema in advance, in
order to access any piece of data. Instead, all web resources are
accessed using URL and no other information

» The structure embeds the relationships between data and this is
itself an important part of the information

o
E
c
>
®
Q
>
o
—
O
(aa)
o

p 13 Keyword Search Goal

A general system overview

o
E
c
>
®
Q
>
o
S
O
(aa)
o

Keyword]
query > Keyword CIeanlng | l
T “Clean” query
Full-text
Data Index
DB schema
Y v
Candidate Identifying

Execution F\ sQL — Network e Data hits o | matches (hit)

queries Generator Schema hits to keywords

b 14 Keyword Search System Overview

Keyword-based querying

» Keyword cleaning: for handling queries that do not match
exactly the content of the database

» Natural language queries
» Spelling corrections
» Keywords expansion

Keywords are expanded to similar words that exist in the
database

o
E
c
>
®
Q
>
o
S
O
(aa)
o

(example) a keyword “Gorge” can be expanded to “George”,
“Gerbo”, and “Georgia” (assuming that those three words exist
in the database)

» Query segmentation
query is segmented into subsequences (keyword segments)

[FRISK in 2009]

p 15 Keyword Search System Overview

Keyword-based Querying

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Conjunctive keyword queries: retrieval of the tuples
that contain exactly all the keywords, i.e. it uses
AND semantic

[DBXplorer, DISCOVER, BANKS (in 2002); ObjectRank (in 2004)]

» Conjunctive or Disjunctive keyword queries: the
user may specify which semantic to use. All the
keywords are in AND or in OR semantic

[SPARK in 2007]

» 16 Keyword Search System Overview

Keyword-based querying (2)
» Boolean operators AND, OR, NOT: a query may
contain many keywords combined in a logical
expression through AND, OR, NOT and parenthesis

o
E
c
>
®
Q
>
o
—
O
(aa)
o

[Precis in 2008]

» Aggregate queries: the user may specify queries
that represent aggregate functions, such as “John
number courses”

[SQAK in 2008]

» 17 Keyword Search System Overview

Comparison of Existing Approches

o
E
c
>
®
Q
>
o
S
O
(aa)
o

v 4 DBxxplore,
*) Keyry
D Discover,
o
e BANKS
> .
%) Precise
()
- SQUAK
(Aggregate Queries)
©
. xavery)
)
()
O
g Csa
£
S >
Less Expressive More Expressive

Partially taken from [8]

p 18 Keyword Search System Overview

Full-text Indexing on RDBs

» the data is indexed for a fast look up process

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Keyword search is heavily related on indexes built
over the database instance:

+ fast way to find the exact keyword inside the DB

- hard to manage frequently updated DBs

- “bag of words” approch that loses the DB
semantics

» 19 Indexing

Creating a Full-text index on an RDB

» Technigues commonly used:

» Symbol Table [DBXplorer in 2002]

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» Master Index [DISCOVER in 2002]
» Double Index [BANKS in 2002]
> ...

» RDBMSs that support full-text indexing and

searching:

IBM DB2, ORACLE, Microsoft SQL-Server, Postgres and
MySQL

» 20 Indexing

@)

=

§ Indexing

§ » Symbol Tables: the equivalent of an inverted index for
cd databases.

(aa)]

()]

» Column granularity: when the DB provides indexes on the
columns, the symbol table can be more compact and contains for
each keyword the list of matching columns (small amount of

memory used)

» Row granularity: for each keyword it keeps the list of rows that
contains it

Both types enable to find only the DB instances that match the
exact value of the keyword

Another Symbol Table is needed for long text attributes

» Token-level: necessary to search keyword in long textual
attributes (e.g.: city name inside an attribute containing whole
address)

> 21 Indexing

Indexing (2)

» Master index: it takes as input a set of keywords
k1, ...,km and outputs a set of basic tuple sets R¥ (i
number of relations in the DB) and j number of
keywords. The basic tuple set R¥ consists of all the
tuples of R, that contain the keyword kj . The master
index builds full-text indices on single attributes of
relations. Then it inspects the index of each
attribute and combines the results

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» implemented using the Oracle8i interMedia Text

[DISCOVER in 2002]

> 22 Indexing

Indexing (3)

» Double indexing: In this approach two indexes are
built:

» Inverted index to map keywords to RIDs (tuple
identifiers) resident on the disk

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» Index that maps RIDs to the graph nodes stored in
memory

The approach assumes that the graph fits in
memory. The in-memory node representation stores
the RID

[BANKS in 2002]

> 23 Indexing

MySQL Full-text Search

» In MySQL full-text search is performed using MATCH()...AGAINST
syntax:
» MATCH takes a comma-separated list of the colum names to be searched

» AGAINST takes a string to search for, and an optional modifier that indicates

what type of search to perform:
AGAINST(expr, [search _modifier])

» Full-text index initialization, on existing tables or at creation time:

» ALTER TABLE tableName ADD FULLTEXT(C1,C2,...,Cn);

» CREATE TABLE tableName (
key INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
C1 VARCHAR(200),
C2 TEXT,
FULLTEXT (C1, C2));

» MySQL uses Ranking with Vector Spaces for ordinary full-text

queries [MySQL documentation: http://dev.mysqgl.com/doc/internals/en/full-text-search.html]

o
E
c
>
®
Q
>
o
S
O
(aa)
o

> 24 Indexing

MySQL Full-text Search (2)

» There are 3 types of full-text searches (search_modifier):

1. Natural Language (default)
The stopword list applies. In additions, words that are present in
50% or more of the rows are considered common and do not
match

2. Boolean (IN BOOLEAN MODE)
Allows to use some boolean operator:
0 [no operator] stands for OR (default)
0 +stands for AND
0 -stands for NOT
o ..
3. Query Expansion Search (WITH QUERY EXPANSION)
Words from the most relevant rows returned by the search are added to the search

string and the search is done again. The query returns the rows from the second
search

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» 25 Indexing

MySQL Query Expansion Search Example

mysgl> SELECT * FROM articles
—-> WHERE MATCH (title,body) AGAINST ('database');

o
£
c
=
®
Q
=
o
S
O
8
()]

| 5 | MySQL wvs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |

2 rows in set (0.00 sec)

mysgl> SELECT * FROM articles
—> WHERE MATCH (title, body)
-> AGAINST (/'database'| WITH QUERY EXPANSION) ;

1 : |
| 5 | vs. YourSQL | In the following comparison ... |
| I
e T e e +

3 rows in set (0.00 sec)

» 26 Indexing

Postgres Full-text Search

» Postgres supports 2 kinds of indexes that can be used for full text
searches (since version 8.3 released in 2008)

1. Generalized Search Tree (Gist)-based index

Lossy, may produce false matches because each document is represented in the
index by a fixed-length signature. The signature is generated by hashing each word
into a single bit in an n-bit string, with all these bits OR-ed together to produce an
n-bit document signature. When two words hash to the same bit position there
will be a false match.

2. Generalized Inverted Index (GIN)-based index

Not Lossy, but their performance depends logarithmically on the number of
unique words

» Which one?

GIN index lookups are about three times faster than GiST

GIN indexes take about three times longer to build than GiST

GIN indexes are about ten times slower to update than GiST indexes
GIN indexes are two-to-three times larger than GiST indexes

o
E
c
>
®
Q
>
o
—
O
(aa)
o

v v v Vv

27 Indexing

Classification

» In literature there are many approaches, that
differ for:
» Data Model
» Indexing technique
» Query Optimization
» Results Ranking

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» We choose to classify the main approaches

basing on a rough classification of their data
model

Based on [Qin L. et al. 2010. Keyword search in databases. Morgan & Claypool Publishers]

» 28 Data Model

Data Model

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» Schema-based to generate SQL queries
DBXplorer, DISCOVER (in 2002)

SPARK (in 2007)

SQAK (in 2008)

KEYMANTIC (in 2010)

KEYRY (in 2011)

v Vv Vv Vv Vv

» Graph-based to provide the result tuples
» BANKS (in 2002)
» STAR (in 2009)
» PRECIS (in 2008)

} 29 Data Model

Schema-based

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Database schema information used to issue SQL
queries (CNs generation)

» 2 main steps:
Generation of a set of SQL queries

ranking the generated set of SQL queries & executing

» 30 Data Model

Graph-based

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» DB is modelled as a directed graph where each
tuple in the DB is a node

Each foreign-key to primary-key link is modelled as a
directed edge between the corresponding tuples

Both the nodes and edges may have weights

Also called “schema-free”: it does not request any
further database schema assistance

p 31 Data Model

Relation and Attribute Graph

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Arelational schema is denoted asR={R,,..., R}
» R; has a set of attributes A, = {A; : 1 < j< ki}

» A Database schema graph G(V,E) is a directed
graph

» There are two types of nodes in V:
relational node R for each relation in the schema

attribute node A for each attribute of each relation
in the schema

[PRECIS in 2008]

p 32 Data Model

Relation and Attribute Graph (2)

» There are two types of edges in E:

» projection edges “K”, one for each attribute node emanating from its
container relation node and ending at the attribute node

» join edges emanating from a relational node and ending at another
relational node

o
E
c
>
®
Q
>
o
S
O
(aa)
o

IIJ 14

» A database schema is represented as:
G(V,E) whereV=R U AandE=K U J

» Each edge has a weight assigned
K edges are undirected and have only one weight associated
J edges are directed so they have two weights, one for each direction

= weights are both syntactic (i.e. a bound on the number of relations)
= more semantic may be added for improving relevance to the query

v Vv

p 33 Data Model

Schema-based Approach

Partially taken from [Qin L. et al. 2010. Keyword search in databases. Morgan & Claypool Publishers]

Useful definitions

» Schema Graph

» A database schema can be represented using a directed
graph G (V,E), where V/ is the set of relation (table) schemas
{R,, R,,..., R} and E is the set of edges between the relation
schemas

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» An edge in the schema graph exists between two relation
schemas R; and R;, if R; has a foreign key referencing the
primary key in R,

» Note that multiple edges may exist between R; and R; in case
R: has multiple foreign keys referencing R,

» 35 Schema-based Approach

Schema Graph

o
E
c
>
®
Q
>
o
S
O
(aa)
o

Author Write Paper Cite

TID TID TID TID

Name _I_.. AID Title PID1
PID |o PID2

A portion of the DBLP schema graph

D 36 Schema-based Approach

Useful definitions (2)

Keyword query (Q):
A set of keywords of size | Q={k,,k,,...,k}

o
E
c
>
®
Q
>
o
—
O
(aa)
o

Keyword Relation:

given a keyword query Q and a schema graph G, a
keyword relation R{K'} is a subset of the relations r, where
the tuples contain a subset of the keywords in the query
K'S Q, formally:

RAK'}={tltEr, AVkEK't contains k A\NkE(Q - K"),t does not contain k}

An empty keyword relation is a relation that does not
contain any keyword, i.e., K' = 2.

p 37 Schema-based Approach

Useful definitions (3)

Candidate Network (CN):

given a keyword query Q and a schema graph G., a candidate
network is a tree of keyword relations, i.e., for each two adjacent
relations:

R{K.} and R{K,}, (R;, R;) € E(Gs) or (R;, R) € E(Gq).

A candidate network needs to satisfy the following conditions:

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Total: a candidate network must contain each keyword in at
least one keyword relation

» Minimal: the total condition is not satisfied anymore if any
keyword relation is removed from the candidate network

» 38 Schema-based Approach

Example — CNs (Q={Michelle, XML}, T . _.=5})

TID Tide

p1 | Contributions of Michelle

C{} A}
p2 | Keyword Search in XML
p3 | Pattern Matching in XML PID2/ \PID1 W{ W/
pa | Algorithms for TopK Query
(b) Paper O

P{Michelle}P{XML} P{Michelle} P{XML}

o
E
c
>
®
Q
>
o
S
O
(aa)
o

aj Cl.larlie CaErpenter o Cy

ar | Michael Richardson

az | Michelle w{} P{}

(a) Author PID2
— Wi cp
w1 ajy p1 PID1
c1 p2 p1
o e 2 | ps | m
Wi %2 | P2 cs | p2 | ps3 O
ws | a3 p2 e o P A{Michelle}P{XML} A{Michelle} P{XML}
ws | a3 | pa
We a p3 (] P2 P4 03 C 4
_ (d) Cite
(c) Write

» 39 Schema-based Approach

Useful definitions(4)

Minimal Total Joining Network of Tuples (MTINT):

Given a keyword query and a relational database with schema
graph G, a joining network of tuples (JNT) is a connected tree of
tuples where every two adjacent tuples, t; €r(R;)and t; €r(R))
can be joined based on the foreign key reference defined on the
relational schema R; and R; in G (either R; = R; or R, 2 R;). An
MTINT is a joining network of tuples that satlsfy the foIIowmg
two conditions:

» Total: the joining network of tuples must contain each
keyword in at least one tuple

» Minimal: the total condition is not satisfied anymore if any
tuple is removed from the joining network of tuples

o
E
c
>
®
Q
>
o
—
O
(aa)
o

T__.: specify the maximum number T of tuples allowed in
an MTJNT.

» 40 Schema-based Approach

Example — MTINTs (Q={Michelle, XML}, T .=5})

TID Title a1 O

p1 | Contributions of Michelle Michelle XML Michelle

p2 | Keyword Search in XML D1 Q D2 1 Q D3
p3 | Pattern Matching in XML w1 C) W2
pa | Algorithms for TopK Query \
(b) Paper P1 Q P2 O
Michelle XML

o
E
c
>
®
Q
>
o
S
O
(aa)
o

a; | Charlie Carpenter
ar | Michael Richardson

a3 | Michelle Michelle Michelle

T, (from C,) T, (from C,) T; (from C,)
Michelle Michelle

as as as O
(a) Author
TID __AID_PID TID PID1 PID2
w1 ai D1 el P2 P We Wy
S 2 |ps | pi XML O
w3 a D2 p3 D4
Wy a3 P2 C3 P2 pP3
C4 p3 2 ps P2
ws as P4
XML XML

s D2 D4
We as p3

(c) Write T, (from C;) T; (from C;) T, (from C)) T, (from C,)

p 41 Schema-based Approach

Candidate Network

» The two main steps of processing a keyword query are

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» CN generation: a set of candidate networks C={C,,C,, -}
is generated over a graph schema G.. The set of CNs
shall be complete and duplication-free. The former
ensures that all MTINTs are found, and the latter is
mainly for efficiency consideration

» CN evaluation: all C; € C are evaluated according to
different semantics/environments for the keyword
query (e.g., the AND/OR semantics, the all/top-k
semantics, the static/stream environments)

p 42 Schema-based Approach

Candidate Network Generation

» Given a keyword query Q over a relational database with
schema graph G, algorithms are designed to generate
candidate networks C={C,,C,,...} that satisfy the following
two conditions:

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» Complete: For each solution T of the keyword query, there
exists a candidate network C, € Cthat can produce T

» Duplication-Free: For every two CNs C; € Cand C; € C, C; and
C; are not isomorphic to each other

p 43 Schema-based Approach

CN Generation in DISCOVER

The algorithm evaluates all the relations in order to discover which of them
are keyword relations. The keyword relations are partial CNs with just one
node. Then, in order to generate all CNs, the algorithm expands the partial
CNs generated to larger partial CNs until all CNs are generated.

There are 3 pruning rules for partial CNs:
» Rule-1: Duplicated CNs are pruned (based on tree isomorphism)

» Rule-2: A CN can be pruned if it contains all the keywords and there is a
leaf node, R {K'}, where K’ = 2, because it will generate results that do
not satisfy the condition of minimality

» Rule-3: When there only exists a single foreign key reference between
two relation schemas (for example, R; & R;),CNs including
Ri {Ki} = R {Ky} € R; {Ks} will be pruned, where Ky,K,, and K; are three
subsets of Q, and R; {K}, R; {K,}, and R, {K;} are keyword relations™

*The Rule-3 reflects the fact that the primary key defined on R. and a tuple in the
relation of R{K,} must refer to the same tuple appearing in both relations R{K,} and R,

{Ks}

o
E
c
>
®
Q
>
o
—
O
(aa)
o

p 44 Schema-based Approach

Input: an [-keyword query Q = {k1, k2, - - - , ki}, the size control parameter Tmax,
the schema graph Gy.
Output: the set of CNsC = {C1, Cp, - - - }.

1: Q < ﬂ; C « /)

2: forall R; € V(Gs), K/’ € Q do

32 Q.enqueue(R;{K'})

4: while Q # ? do

5: T <« Q.dequeue()

¢6: if T is minimal and total and T does not satisfy Rule-1 then
7

8

9

o
E
c
>
®
Q
>
o
S
O
(aa)
o

C < C|J{T}; continue
if the size of T < Tmax then
forall R; € T do

10: for all (R;, RJ') € E(Gg) or (Rj, R;) € E(Gyg) do
11: T < T U(R,', Rj)

12: if 7/ does not satisfy Rule-2 or Rule-3 then

13: Q.enqueue(T")

14: return C;

p 45 Schema-based Approach

» Lines 1-3 initialize a queue Q that maintains all partial CNs
to be a list of trees with size 1 that contain any subset of
keywords

» From line 4, each partial tree T is dequeued from Q,
iteratively

» Lines 6-7 check whether T is a valid CN that has not been
generated before. If so, it is added to the result set C and
there is no need to further expand T

» Lines 8-13 expand T by adding an edge from any relation
Ri'in T to another new relation R, and form a new partial
CN T'. T" is enqueued for further expansion if it does not
satisfy the pruning rules 2 or 3

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» 46 Schema-based Approach

Algorithm Discover-CNGen (example)

Let us Consider the 2-keyword query Q={Michelle, XML} DB with

DB Group @ unimo

schema:
Author Write Paper Cite
TID _L TID TID ‘ TID
Name AlID Title PID1
PID PID2
TID Tite D D D TID PID1 PID2
ar Charlic Carpenter P1 Contributions of.Mlchelle s a - 1 D2 P1
. . p2 | Keyword Search in XML 2 p3 p1
ay | Michael Richardson o w3 a p2
Michell p3 | Pattern Matching in XML Wi 2 P 3 p2 p3
=2 — p4 | Algorithms for TopK Query || s | g5 D4 €4 p3 p4
(a) Author (5) Paper we @ 3 Cs P2 ‘ P4
(c) Write (d) Cite

p 47 Schema-based Approach

Algorithm Discover-CNGen (example 2)

Q={Michelle, XML}
Note that we show only the generation of a CN

» First, we enqueue the set of partial CNs with size 1
» T,=A{Michelle}

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» Expanding T,, as there is an edge A -> W in G;, we can add the
corresponding edge in T, and form another partial CN

» T,= A{Michelle} join W{}

» When expanding T,, we can add edges: W{} < A{XML}, W{} < P {Michelle}
and W {} < P {XML}, and obtain three partial trees:

» T; =A{Michelle} join W{} join A{XML}
» T, =A{Michelle} join W{} join P{Michelle}
» T = A{Michelle} join W{} join P{XML}

p 48 Schema-based Approach

Algorithm Discover-CNGen (example 3)

» T3 = A{Michelle} join W{} join A{JXML}
» W has only one foreign key referencing to A

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» satisfies Rule-3, thus it will be pruned (line 12)

» T, = A{Michelle} join W{} join P{Michelle}
» Not total and does not satisfy any pruning conditions
» enqueued for further expansion (line 13)

» Tc = A{Michelle} join W{} join P{XML}
» avalid CN added to the final result set (line 7)

» 49 Schema-based Approach

Algorithm Discover-CNGen (example 4)

DB Group @ unimo

Ts = A{Michelle} join W{} join P{XML}

Author Write Paper Cite

TID | TID TID ‘ TID

Name _I_.. AID Title PID1
PID PID2

TID AID PID

TID PID1 PID2
w1 ai P1

i Contributi f Michell ¢
e f e P P ER
Michael Richardson 2 ——— —d L7/ - 3 P2 p3

az | Michelle b3 > w4 3 s C4 p3 pa
7 gorithms Tor TopK'UJu) /S 7 cs D2 P4
(a) Author We as P3
(b) Paper (d) Cite
(c) Write

» 50 Schema-based Approach

Algorithm Discover-CNGen performance

The above algorithm can generate a complete and duplication-
free set of CNs, but the cost of generating the set of CNs is high,
due to:

» Given a |-keyword query and a large Tmax over a complex database
schema G the number of CNs to be generated can be very large.The
number of CNs increases exponentially while any of these factor
increases

» Adding an arbitrary edge to an arbitrary position in a partial CN
when expanding, makes the number of temporal results extremely
large, while only few of them will contribute to the final results.
Most of the results end up with a partial CN of size T, that does
not contain all keywords, so is not total

» The algorithm needs a large number of tree isomorphism tests,
which is costly. This is because the isomorphism test will only be
performed when a valid MTINT is generated. As a result, all
isomorphisms of an MTINT will be generated and checked

o
E
c
>
®
Q
>
o
—
O
(aa)
o

p 51 Schema-based Approach

Rightmost algorithm

» In order to solve the above problems, the rightmost
algorithm was proposed:

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» reduces the number of partial results generated by
expanding the partial CNs

» avoids isomorphism testing by assigning a proper
expansion order

[Markowetz et al., Keyword search on relational data streams. In Proc. 2007 ACM
SIGMOD Int. Conf. On Management of Data, pages 605-616, 2007]

p 52 Schema-based Approach

CN evaluation

After generating all candidate networks, we have to
evaluate them in order to obtain the final result. The
approaches can be split in two categories:

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Getting all MTINTs in the DB: all MTJNTs are
evaluated upon the set of CN generated by specifying
a proper execution plan

» Getting top-k MTINTs in the DB: since it can be
ineffective to present users a huge number of
MTINTSs, only top-k MTJNTSs are returned

» 53 Schema-based Approach

Getting all MTINTSs

» Greedy algorithm based on the following
observations:

» Sub-expressions (intermediate CNs) that are shared by
most CNs should be evaluated first

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» Sub-expressions that may generate the smallest
number of results should be evaluated first

The size of results for any sub-expression e is denoted as
estimate(e) and the number of CNs that share the sub-
expression e is denoted as frequency(e). For any sub-
expression e (a and b are constants):

score(e) = frequency(e)? / (log(estimate(e))) ©

p 54 Schema-based Approach

Getting all MTINTSs (2)

Algorithm
1. First evaluates all sub-expressions of size 1

2. lteratively evaluates sub-expressions of size 2 (join)
and selects the one with the highest score value until
all CNs are evaluated

3. Newly evaluated sub-expression must be a join with
two sub-expressions already evaluated

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» The MTJNTs are then ranked by measuring the number
of joins involved

» The smaller the number of joins, the higher the rank
because it represents a closer association

[DISCOVER in 2002]

» 55 Schema-based Approach

Greedy Algorithm (example)

TID Title
p1 | Contributions of Michelle

C{} A}
Pattern Matching in XML PID PID1 W{ W/
Algorithms for TopK Query T,
(b) Paper

P{Michelle}P{ XML} P{ Michelle} P{XML}

o
E
c
>
®
Q
>
o
S
O
(aa)
o

a; | Charlie Carpenter
ar | Michael Richardson

a3 | Michelle
(a) Author

TID _AID _PID TID PID1 PID2
e R ci | p2 | pi
wy ai P2

) p3 p1
w3 aj P2

c3 P2 p3

ws | a3 p2 e o P A{ Mlchelle JP{XML} A{Michelle} P{XML}
ws as P4
We a p3 Cs P2 P4 C 3 C’ 4
(d) Cite
(c) Write

» 56 Schema-based Approach

Greedy Algorithm (example)

TID Title

o
E
c
>
®
Q
>
o
S
O
(aa)
o

c(} A{}
p2 | Keyword Search in XML
p3 | Pattern Matching in XML PID2 D1 W{ W{
2, e STTOT TOPRUUC T,
(b) Paper O

P{Michelle}P{XML} P{Michelle} P{XML}
aj C}.larhe CaErpenter C, Cy
ar | Michael Richardson
a3 | Michelle

(a) Author

TIDH AID | PID TID PID1 PID2
wLopa) Pl ¢t | p2 | pi
w2 | a4 P2

Cc2 pP3 P1
w3 a P2

C3 p2 p3
w4 | a3 P2

C4 pP3 P4
w1 | P cs | p2 | pa
We as p3

(c) Write (d) Cite

p 57 Schema-based Approach

Greedy Algorithm (example)

p1 | Contributions of Michelle C{}
Pattern Matching in XML PID2/ \PID1 W{ W/
Algorithms for TopK Query T,
(b) Paper O

P{Michelle}P{XML} P{Michelle} P{XML}

o
E
c
>
®
Q
>
o
S
O
(aa)
o

a; | Charlie Carpenter
ar | Michael Richardson

a3 | Michelle
(a) Author

TID _AID _PID TID PID1 PID2
e R ci | p2 | pi
wy ai P2

) p3 p1
w3 aj P2

c3 P2 p3

ws | a3 p2 e o P A{ Mlchelle JP{XML} A{Michelle} P{XML}
ws as P4
We a p3 Cs P2 P4 C 3 C’ 4
(d) Cite
(c) Write

p 58 Schema-based Approach

Greedy Algorithm (example)

-T}ll)-rpgll;nm C{} A{}
p2 | Keyword Search in XML
mﬂ@ . W{Ro
” e IPTTIe T,
(b) Paper O

P{Michelle}P{XML} P{Michelle} P{XML}

o
E
c
>
®
Q
>
o
S
O
(aa)
o

a; | Charlie Carpenter
ar | Michael Richardson

a3 | Michelle
(a) Author

TID _AID _PID TID PID1 PID2
e R ci | p2 | pi
wy ai P2

) p3 p1
w3 aj P2

c3 P2 p3

ws | a3 p2 e o P A{ Mlchelle JP{XML} A{Michelle} P{XML}
ws as P4
We a p3 Cs P2 P4 C 3 C’ 4
(d) Cite
(c) Write

» 59 Schema-based Approach

Greedy Algorithm (example)

Al
p1 | Contributions of Michelle C{}
p2 | Keyword Search in XML
p3 | Pattern Matching in XML PID2/ \PID1 W{ W/
pa | Algorithms for TopK Query
(b) Paper O

TID P{Michelle}P{XML} P{Michelle} P{XML}

- Charhe Carpenter

o
E
c
>
®
Q
>
o
S
O
(aa)
o

(a) Author
TIDH AID | PID TID PID1 PID2
L e ci | p2 | P
wy ai P2
Cc2 pP3 P1
w3 75) P2
C3 p2 p3

ws | a3 p2 e o P A{Michelle}P{XML} A{Michelle} P{XML}
ws as P4
We a p3 Cs P2 P4 C 3 C’ 4
(d) Cite
(c) Write

p 60 Schema-based Approach

Greedy Algorithm (example)

o
£
c
=
®
Q
=
o
S
O
8
()]

intermediate CN N° of Score(e)
sharing (a=1,b=0.3)
1 5/4 2

P{Michelle} — C{}

T,) P{XML} — C{} 2 5/2 2.6

T;) P{Michelle} - W({} 1 3/2 1.7

T) P{XML}-Wf{} 2 3 2.5

T;) A{Michelle} — W{} 2 2 2.9
*Estimete(e):

* we can get the sizes of R{K} from the master index
* we know the selectivity of the primary to foreign key joins, which can be
calculated from the sizes of the relation

p 61 Schema-based Approach

Greedy Algorithm (example)

» Execution plan:

» C,: P{Michelle} join C{} join P{XML}
0O T, < P{Michelle} join C{}
O T, € P{XML} join C{}
» Score(T,)>Score(T,) - execute T,
C, € T, join P{Michelle}

» C;: A{Michelle} join W{} join P{XML}
0 Ty € A{Michelle} join W{}
0 T, < P{XML}join W{}
> Score(T;)>Score(T,) - execute T,
C, € T join P{XML}

» C,: P{Michelle} join W{} join A{} join W{} join P{XML}
0 T, € P{Michelle} join W{}
0 T, € P{XML} join W{}
C, & T;join A{} join T,

» C,: A{Michelle} join W{} join P{} join C{} join P{XML}
0 Ty € A{Michelle} join W{}
0O T, € P{XML} join C{}

C, € T join P{} join T,

o
E
c
>
®
Q
>
o
S
O
(aa)
o

Getting top-k MTINTSs

» The aim of all the algorithms is to find a proper ordering
criteria of generating MTINTs in order to stop early before all
MTINTSs are generated

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» The Sparse algorithm, the Single-Pipelined algorithm, and the
Global-Pipelined algorithm are based on attribute level
ranking functions [DISCOVER-II in 2003]

» The Skyline-Sweeping algorithm and the Block-Pipelined
algorithm are based on tree level ranking functions, which are
not tuple-monotonic [SPARK in 2007]

» 63 Schema-based Approach

Attribute level ranking function

» Given an MTINT T, size(T) is the number of its tuples, and a keyword
query Q, the tuple level ranking function first assigns each text
attribute for tuples in T an individual score and then combines them
together to get the final score:

ZaeT score(a, Q)

size(T)
score(a, Q) is the IR-style relevance score for the virtual document in
the MTIJNT T and Q that is defined as:

| [+In(1 4 In(tf(a, k)))
score(a, Q) = Z — fd/(a)
keQNa (I=s5)+s- avdl(Rel(a))

dF ek — In(N (Rel(@)
df(a. k) = It @ k) + 1

o
E
c
>
®
Q
>
o
S
O
(aa)
o

score(T, Q) =

-idf(a, k)

p 64 Schema-based Approach

Tree level ranking function

» In the attribute level ranking functions, each text attribute
of an MTINT is considered as a virtual document

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Tree level ranking functions consider the whole MTINT as
a virtual document rather than each individual text
attribute

score(T,Q) = score (T ,Q)-score,(T,Q)-score (T,Q)
where:

» score (T,Q): the TF-IDF score

» score,(T,Q): the completeness score

» score (T,Q): the size normalization score

p» 65 Schema-based Approach

Graph-based Approach

Partially taken from [Qin L. et al. 2010. Keyword search in databases. Morgan & Claypool Publishers]

Data Model

» DB modeled as a direct graph:
» Each tupleis a node

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Nodes has weight, also called “prestige” and it is a measure of the
number of pointers to that node (similar to PageRank)

» Each foreign-key to primary-key link is an edge

» Forward edges: reflects the strength of the proximity relationship
between two tuples

is set to 1 by default
can be set to any desired value to reflect the importance of the edge

» Backward edges (v,u): the weight is proportional to the number of
links to v from the nodes of the same type as u

[BANKS in 2002]

» 67 Graph-based Approach

Problem Definition

Given a directed weighted data graph GD, an /-keyword query
consists of a set of / > 2 keywords

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Problem:
find a set of subgraphs of G,: R(G,Q) = {R,(V,E),R,(V,E),---},
where each R(V,E) is a connected subgraph of G, that contains
all the I keywords

» Solution:
Find a reduced tree that contains all the keywords and satisfies
one of this requirements (semantics):
» Steiner Tree-Based Semantics (optimal, but NP-complete)
» Distinct Root-Based Semantics (not optimal, but easier to compute)

p 68 Graph-based Approach

Minimum Steiner Tree Problem

» Given a weighted graph G =(V, E) andasetR & V, our
goal is to determine the least cost connected subgraph
spanning R. Vertices in R are called terminal nodes and
those in V \R are called Steiner vertices

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» we are free to use non terminal vertices of the graph (the
Steiner nodes) in order to determine the Steiner tree

» NP-complete

p 69 Graph-based Approach

Minimum Steiner Example

o
E
c
>
®
Q
>
o
S
O
(aa)
o

o‘/ﬁ

(e) Tuple Connections © Terminal Node
O Steiner Node

» 70 Graph-based Approach

Steiner Tree-based Keyword Search

» Answer to Q (called a Q-subtree) is defined as any subtree T of
GD that is reduced with respect to Q

o
E
c
>
®
Q
>
o
—
O
(aa)
o

» Steiner Tree-Based Semantics

» Weight of a Q-subtree is defined as the total weight of the edges in the
tree:
w(T) = E we ({1, v))

(u,v)eE(T)

» where E(T) is the set of edges in T. The I-keyword query finds all (or top-
k) Q-subtrees in weight increasing order, where the weight denotes the
cost to connect the | keywords. Under this semantics, finding the Q-
subtree with the smallest weight is the well-known optimal steiner tree
problem, which is NP-complete

b 71 Graph-based Approach

Steiner Tree-based Keyword Search

» Algorithms
» Backward Search

the first tree returned is an l-approximation of the optimal
steiner tree
[BANKS in 2002]

o
E
c
>
®
Q
>
o
S
O
(aa)
o

» Dynamic Programming

finds the optimal (top-1) steiner tree in time:

O(BIn+2I((l+log n)n+m))
[14] in 2007

» Polynomial Delay
[STAR in 2009]
[15] SIGMOD in 2008

p 72 Graph-based Approach

Empirical Performance Comparison

Characteristics of the evaluation data sets

o
E
c
>
®
Q
>
o
S
O
(aa)
o

in thousands

Dataset Size (MBs) Relations V| |E| T

MONDIAL 16 28 17 56 12

IMDb 459 6 1673 6075 1748

Wikipedia 391 6 206 785 750
Legend

V| number of nodes (tuples) in data graph
E| number of edges (foreign keys) in data graph

T| number of unique terms

[16] TDKE in 2012

» 73 Systems Comparison

Empirical Performance Comparison

* Retrieval depth: 100 results
e y-axisisin alog scale

o
E
c
>
®
Q
>
o
S
O
(aa)
o

(a) MONDIAL (b) Wikipedia
S S
S S
O —o— BANKS © BANKS
g --A- DISCOVER g - DISCOVER
= O + DISCOVER-II ‘= © DISCOVER-II
B v~ % - BANKS-II 5 — - BANKS-II
= -<- DPBF =} - DPBF
3 -9- BLINKS § -9 BLINKS
o —%— STAR > —=- STAR
o 0
S S |
I I | I I I I I I I I
1 2 3 4 5 1 2 3 4 5 6
number of search terms number of search terms

[16] TDKE in 2012

} 74 Systems Comparison

References

[1] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2009. Keyword search in databases: the power of RDBMS.
(SIGMOD '09), Carsten Binnig and Benoit Dageville (Eds.). ACM, New York, NY, USA, 681-694.

[2] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2010. Keyword search in databases. Morgan & Claypool
Publishers, 2010. ISBN 160845195X, 9781608451951

o
E
c
>
®
Q
>
o
—
O
(aa)
o

[3] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A system for keyword-based search over relational
databases”, In ICDE, 2002.

[4] Vagelis Hristidis and Yannis Papakonstantinou. 2002. Discover: keyword search in relational
databases. (VLDB '02). VLDB Endowment 670-681.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan, “Keyword Searching and Browsing
in Databases using BANKS”, ICDE, 2002.

[6] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. 2007. Spark: top-k keyword query in relational
databases (SIGMOD '07). ACM, New York, NY, USA, 115-126.

[7] Ken Q. Pu and Xiaohui Yu. 2009. FRISK: Keyword Query Cleaning and Processing in Action. (ICDE '09).
IEEE Computer Society, Washington, DC, USA, 1531-1534. DOI=10.1109/I1CDE.2009.139

[8] Sandeep Tata and Guy M. Lohman. 2008. SQAK: doing more with keywords. (SIGMOD '08). ACM,
New York, NY, USA, 889-902. DOI=10.1145/1376616.1376705

[9] Alkis Simitsis, Georgia Koutrika, and Yannis loannidis. 2008. Précis: from unstructured keywords as
queries to structured databases as answers. The VLDB Journal 17, 1 (January 2008), 117-149.

» 75 References

References

[10] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient ir-style keyword search over relational
databases”, In VLDB, 2003.

[11] A. Balmin, V. Hristidis, Y. Papakonstantinou, “ObjectRank: Authority-Based Keyword Search in
Databases”, VLDB, 2004.

[12] Markowetz et al., Keyword search on relational data streams. In Proc. 2007 ACM SIGMOD Int. Conf.
On Management of Data, pages 605—616, 2007

o
E
c
>
®
Q
>
o
—
O
(aa)
o

[13] S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. In Networks, 1972.

[14] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin. Finding top-k min cost
connected trees in databases. In Proc. 23rd Int. Conf. on Data Engineering, pages 836 845, 2007

[15] Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Keyword proximity search in complex
data graphs. In Proc. 2008 ACM SIGMOD Int. Conf. On Management of Data, pages 927-940, 2008

[16] Coffman J, Weaver A C” An Empirical Performance Evaluation of Relational Keyword Search
Techniques”. To appear in IEEE TKDE, ISSN : 1041-4347. 2012

[17] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum, “STAR: Steiner-Tree
Approximation in Relationship Graphs,” in ICDE 09, March 2009, pp. 868—879.

[18] S. Bergamaschi, E. Domnori, F.Guerra, R. Trillo Lado, Y. Velegrakis: Keyword search over relational
databases: a metadata approach. SIGMOD Conference 2011: 565-576

[19] S. Bergamaschi, E. Domnori, F. Guerra, M. Orsini, R. Trillo Lado, Y. Velegrakis: Keymantic: Semantic
Keyword-based Searching in Data Integration Systems. PVLDB 3(2): 1637-1640 (2010)

D 76 References

References

[20] Sonia Bergamaschi, Francesco Guerra, Silvia Rota, Yannis Velegrakis: A Hidden Markov Model
Approach to Keyword-Based Search over Relational Databases. ER 2011: 411-420S.

[21] Silvia Rota, Sonia Bergamaschi, Francesco Guerra: The list Viterbi training algorithm and its
application to keyword search over databases. CIKM 2011: 1601-1606

[22] Alex Wright: Searching the deep web. Commun. ACM 51(10):14-15 (2008)
[23] http://dev.mysql.com/doc/internals/en/full-text-search.html

o
E
c
>
®
Q
>
o
—
O
(aa)
o

[24] http://www.postgresql.org/docs/8.3/static/textsearch-indexes.html

[25] Markowetz et al., Keyword search on relational data streams. In Proc. 2007 ACM SIGMOD Int. Conf.
On Management of Data, pages 605—616, 2007

b 77 References

