
Introduction to
Information Retrieval

Prof Fabio Crestani

Faculty of Informatics
University of Lugano (USI)

Switzerland

PROMISE
Winter School 2013
Bressanone, Italy

Aim of this lecture

l  Review for you some of the main concepts of
Information Retrieval (IR)

l  Provide an understanding of the architecture
and functional specification on an IR systems

l  Prepare you to better understand more
advanced concepts to follow

2

3

Outline

l  What is Information Retrieval (IR)?
–  How is it different from Databases?
–  Why is it hard?

l  Functional specification of an IR system
l  The IR process

–  Indexing
–  Retrieval

l  Final considerations

4

Information Life Cycle

Inactive

Creation

Utilization Searching

Active

Semi-Active

Retention/
Mining

Disposition

Discard

Using
Creating

Authoring
Modifying

Organizing
Indexing

Storing
Retrieval

Distribution
Networking

Accessing
Filtering

Key issues

l  How to describe information resources or
information-bearing objects in ways that they
can be effectively used by those who need to
use them
–  Organizing / Indexing / Storing

l  How to find the appropriate information
resources or information-bearing objects for
someone’s (or your own) needs
–  Retrieving / Accessing / Filtering

5

6

Information access systems

l  The effective use of information requires efficient
and effective access to it

l  There are several technologies for information
access
–  Database
–  Information Retrieval
–  Digital Libraries
–  Information Filtering
–  Categorisation
–  Expert systems

l  Different technologies are needed because
information can be in different forms and for
different uses

7

Information is different from data

l  “Jules Verne wrote 20,000
Leagues Under The Sea and
Around The World In 80 Days. He
died in 1905.”

Name Age Salary Date joined
String Int Int Date
Donald 25 £50 000 1/3/01

Mickey 52 £100 000 1/2/99

Types (structured inf.)

Words (unstructured inf.)

8

And so are search statements

l  SQL
l  SELECT Name FROM

Employee WHERE Age
BETWEEN 30 AND 40

–  Artificial language
–  Complete description
–  Exact description

Google
Top 10 Gaining Queries
 Week of Jan. 14, 2013
1.  chatroulette
2.  ipad
3.  justin bieber
4.  nicki minaj
5.  friv
6.  myxer
7.  katy perry
8.  twitter
9.  Gamezer
10.  facebook

9

And so is what we get back

– SELECT Name
FROM Employee
WHERE Age
BETWEEN 30
AND 40

gives Names

-known result
type (list of
Names)

10

Relevance

l  Relevance is the core concept in IR, but
nobody has a good definition
–  Relevance = useful
–  Relevance = topically related
–  Relevance = new
–  Relevance = interesting
–  Relevance = ???

l  However we still want relevant information

11

Types of search systems

Structured Unstructured

Data Typed Untyped

Model Deterministic Prob./Sim.

Matching Exact Partial

Query
specification

Complete Incomplete

Query language Artificial Natural

Items wanted Matching Relevant

Error sensitivity High Low

12

Why is this hard?

l  Documents/images/
video/speech/etc are
complex

l  We need some
representation but

l  Semantics
–  What words mean

l  Natural language
–  How we say things

l  Computers cannot deal
with these easily

docs

doc processing

docs
docs

13

Why is IR hard?

l  Context

l  Opinion
Sponge Sponge Bob

Funny Talented Honest

14

Why is IR hard?

l  Semantics

West bank Bank of China Bank note

15

Why is this hard?

query

Information need
l  Information needs must

be expressed as a query
–  But users don’t often know

what they want
l  Problems

–  Verbalising information
needs

–  Understanding query syntax
–  Understanding search

engines

Search

Guess what I mean

vs

16

Why is this hard?

l  Queries are
l  under-specified

–  ‘uefa’ ‘brad pitt’ ‘big brother’
l  ambiguous

–  ‘jordan’
l  context-sensitive
l  represent different types of

search
–  E.g. decision making
–  background search
–  fact search

l  IR means dealing with all of
this

query repr.

matching/retrieval

doc repr.

docs

17

Why is this hard?

l  Scale is also an issue
l  357+ terabytes of print information produced a year

(terabyte = 1000 gigabytes)
l  Plus tv stations (video), radio stations (speech), specialist

data (satellite image, medical images, music, etc…)
l  Estimate > 600 petabytes per year

–  (1 pb = 1000 terabytes)
–  Of this we can perhaps access about 100pb

l  IR means fast and scalable solutions

18

Why is this hard?

l  Information is often dynamic
–  News
–  Web pages
–  Weather maps
–  Etc

l  And so are queries
–  Searchers may change information need whilst searching

l  IR must cope with change in data and searcher

19

Questions?

20

docs

doc representation files

docs

doc indexing

docs
docs

query indexing

query repres.

query

information need

matching/retrieval

user assessment

The IR process

21

Functional specs of an IR System

Interest profiles
& Queries

Documents
& Data

Rules of the game =
Rules for subject indexing +

Thesaurus

Vocabulary
and

Indexing
Language

Comparison/
Matching

Profiles &
Search requests

Document
representations

Indexing
(Content analysis)

Formulating query in
terms of

descriptors

Storage of
profiles Storage of

Documents

Information Retrieval System

Potentially
Relevant

Documents

22

Architecture of an IR system:
examples

23

Architecture of an IR system:
examples

24

IR processes

l  Main IR processes:
–  Document indexing
–  Query indexing
–  Document retrieval
–  Results visualisation
–  Relevance feedback

l  We will study these processes in detail in the
next few slides

25

Questions?

26

Indexing: outline

l  How do we process text for content analysis?
–  Different steps of the indexing process

l  Statistical properties of text
–  Zipf distribution

l  Term weighting
–  Most important term weighting functions

27

Indexing process

l  Indexing task: “what is this document about?”
l  Indexing is carried out in a number of steps:

1.  Character encoding
2.  Language recognition
3.  Segmentation and tokenisation
4.  Phrase identification and named entity recognition
5.  Term normalisation
6.  Stop word removal
7.  Feature normalisation (stemming)
8.  Term weighting

28

1. Character encoding

l  Character encoding is a binary representation
of the native language alphabet
–  Usually one-byte (ASCII), but some languages

require double-byte encoding (e.g. Japanese,
Chinese)

l  UNICODE standard for representation of all
world’s languages

l  Problem:
–  Support native codes or transform to UNICODE for

processing and retrieval?

29

Native language encoding

l  Language (alphabet) specific native encoding
standards
–  Chinese: GB, Big5
–  Western Europe: ISO-8859-1 (Latin1)
–  Russian: KOI-8, ISO-8859-5, CP-1251

l  Problems:
–  Not every system follows a standard
–  Need to know which standard is being used

l  In HTML we have the “Content Type” header field
–  Not all standards are comparable
–  Difficult to move from one standard to another

30

UNICODE / ISO 10646

l  Single 16-bit (2-byte) encoding designed to
encompass all world’s languages
–  16 bits = 65,000 characters, UNICODE currently

specifies 38,887
–  Cover languages from Americas, Europe, Middle

East, Africa, India, Asia
–  There is space for new characters or application-

specific characters
l  Problems:

–  Who uses it, yet?
–  More computationally expensive

31

2. Language identification

l  Given a monolingual document from a
multilingual collection, determine its language
–  Based on native character encoding (not possible if

using UNICODE)
–  Use statistical model of N-grams or words
–  Recognise language-specific characters
–  Use stopwords from IR (Luhn/Zip work)

l  More complex if the document is multilingual

32

3. Segmentation/Tokenisation

l  Identify words/token
l  Convert document into a “stream of text”
l  Easy for English, French, …
l  Much more difficult for Asian languages

33

Segmentation models

l  Different approaches:
–  Unique segmentation: decide whether to put the

boundary and each point
–  Plausible strings: produce all substrings that might

be useful
–  Plausible interpretation: produce all terms that might

be implied
l  To simplify, let us assume we are dealing with

a monolingual (English) collection of
documents

34

4. Phrase identification and
named entity recognition

l  Enables to identify:
–  Phrases

l  “Database management systems”, “Bank of Scotland”,
“United States of America”, “programming language”,
etc.

–  Named entities
l  “George Bush”, “Johnny Walker”, “MI5”, “September

11th”, etc.

l  Approaches:
–  Use part-of-speech tagging
–  Use list of named entities
–  Use proximity search (we will see this approach)

35

5. Term normalisation

l  Normalise text to
make it easier to
compare
–  Lose case
–  Lose punctuation
–  Arrange in

alphabetical order
l  Problems:

–  Bag of words!
–  Loss of context!

Twinkle, twinkle, little bat.
How I wonder what you're at!
Up above the world you fly.
Like a tea-tray in the sky.

a above at bat fly how i in like little re sky
tea the the tray twinkle twinkle up what
wonder world you you

36

6. Stop word removal

l  Remove words that are poor descriptors
l  Connectives such as ‘and’ ‘but’ ‘because’
l  Articles: ‘the’ ‘an’ ‘a’
l  Prepositions: ‘of’, ‘but’

l  And perhaps remove numbers and dates
l  List of words removed is known as a stopword

list
–  Often created in advance
–  A stopword list is based on word frequency

37

Zipf distribution

l  Words are not evenly distributed
–  Across documents, speech, etc

l  If we examine how often words appear
–  A few words appear very frequently
–  A medium number of words have medium frequency
–  Many words occur very infrequently

l  They exhibit a Zipf distribution

38

Rank Freq Term

1 37 system
2 32 knowledg
3 24 base
4 20 problem
5 18 abstract
6 15 model
7 15 languag
8 15 implem
9 13 reason
10 13 inform
11 11 expert
12 11 analysi
13 10 rule
14 10 program
15 10 oper
16 10 evalu
17 10 comput
18 10 case
19 9 gener
20 9 form

150 2 enhanc
151 2 energi
152 2 emphasi
153 2 detect
154 2 desir
155 2 date
156 2 critic
157 2 content
158 2 consider
159 2 concern
160 2 compon
161 2 compar
162 2 commerci
163 2 clause
164 2 aspect

Example of term distribution

Head and tail
of the terms’
distribution

39

Corresponding Zipf Curve

Rank Freq Term

1 37 system
2 32 knowledg
3 24 base
4 20 problem
5 18 abstract
6 15 model
7 15 languag
8 15 implem
9 13 reason
10 13 inform
11 11 expert
12 11 analysi
13 10 rule
14 10 program
15 10 oper
16 10 evalu
17 10 comput
18 10 case
19 9 gener
20 9 form

40

Zipf’s distribution

Raw frequencies Log of raw frequencies

41

Zipf distribution

l  English (and other languages) follow a Zipf distribution
–  As do other things like website popularity
–  The Zipf distribution is known as “power law”

l  High frequency words are useless
–  Describe too many objects and are meaningless
–  These are the stopwords

l  Very low frequency words may be useless
–  E.g. spelling mistakes, people’s names
–  Too rare to be of value (according to a cost/benefit analysis)

l  Best words are middle frequency
–  Used often but not too often

42

Zipf distribution

43

Stopword lists

l  Common words
–  Standard list contains ~ 300 words
–  a an able about above according accordingly across actually

after afterwards again against ….
l  Specialised and “ad hoc” stopword lists

–  E.g. remove word that appears in more than 50% of
documents

l  Stopword removal produces a considerable reduction
in the number of words:

–  E.g. WSJ collection (74 520 documents)
l  Without stopword removal - 37 880 008 words
l  With stopword removal – 24 899 830 words

l  Results: smaller files and faster search

44

Our example

twinkle twinkle little bat how i wonder
what you re at up high above the world
you fly like a tea tray in the sky

twinkle twinkle little bat wonder world
high like tea tray sky

25 original words

11 non-stopwords

45

The Best Hill Walking in Scotland
by Cameron McNeish (1)

John Cleare’s Fifty Best Hill Walks
by John Cleare (2)

7. Feature normalisation

l  Words can appear in different forms
l  Need some way to recognise common concepts

–  Example:

l  ‘Hill walks’ will retrieve (2) not (1)
l  ‘Hill walking’ will retrieve (1) not (2)

46

Stemming

l  Stemming is one technique to provide ways of finding
morphological variants of search terms

l  Used to improve retrieval effectiveness and to reduce the
size of indexing files

l  Taxonomy of stemming algorithms:

47

Stemming

l  Stem
–  Portion of a word which is left after the removal of its

affixes
–  walk ß walked, walker, walking, walks

l  Benefits of stemming?
–  Some favor the usage of stemming, but many Web search

engines do not adopt any stemming algorithm
l  Issues

–  Correctness
–  Retrieval performance
–  Compression performance

48

Errors generated by stemming

Too aggressive Too timid
organisation/organ european/europe

policy/police cylinder/cylindrical

execute/executive create/creation

arm/army search/searcher

49

Summary

l  Original text

l  Tokenisation

l  Stopword removal

l  Stemming

 twinkle twinkle little bat how i wonder
 what you re at up high above the world you fly
 like a tea tray in the sky

twinkle twinkle little bat wonder
world high like tea tray sky

twinkl twinkl littl bat wonder
world high like tea trai sky

Twinkle, twinkle, little bat.
How I wonder what you're at!
Up above the world you fly.
Like a tea-tray in the sky.

50

Representing text: considerations

l  Two aspects of representation
–  Description

l  What is the content of a document?
l  Important for recall - % of relevant material retrieved

–  Discrimination
l  How do I distinguish this document from other

documents?
l  Important for precision - % of retrieved material

relevant
l  These act against each other, so a good

representation is a balance of both
–  Stopword removal emphasises discrimination

l  Reduces the number of words in common between
document descriptions

–  Stemming emphasises description
l  ‘Adds’ similar words to documents

51

8. Term weighting

l  Terminology: processed words are known as index
terms

–  Early IR systems only recorded term presence or absence
(binary weights)

l  Example:

docs twink
l

littl bat tea

D1 1 1 1 1

D2 0 0 0 1

D3 0 1 1 1

D4 0 1 0 1

D5 1 0 1 0

52

Term weighting

l  More advanced IR systems weight terms
according to importance

l  Term weighting can be based on frequency of
occurrence in:
–  Collection of documents
–  Individual documents

l  So, most important term weights:
–  Inverse document frequency (idf)
–  Term frequency (tf)

53

Inverse document frequency

l  Based on importance of term in the collection

l  N = the number of documents in the collection
l  dfi = the number of documents that contain term t
l  document frequency = frequency with which t appears

!
"
#

$
%
&=

i
i df

Nidf log

54

Inverse document frequency

l  idf gives high values for infrequent terms

l  E.g. for a collection of 1000 documents
–  log (1000/1000) = 0
–  log (1000/500) = 0.301
–  log (1000/20) = 2.698
–  log (1000/1) = 4

55

Example

l  idftwinkl =log(5/2) = 0.38
l  idflittl =log(5/3) = 0.22
l  idfbat =log(5/3) = 0.22
l  idftea =log(5/4) = 0.10

docs twinkl littl bat tea

D1 0.38 0.22 0.22 0.10

D2 0 0 0 0.10
D3 0 0.22 0.22 0.10
D4 0 0.22 0 0.10
D5 0.38 0 0.22 0

56

Term frequency

l  Based on importance in the document
–  Many ways, simplest is raw frequency

–  numi is the total number of times this term occurs in
document d

l  Sometime it might be useful taking the log of
the term frequency

idi numtf =

57

Term frequency

l  tf gives high values for frequent terms
l  E.g. for a document with 11 words

–  “twinkl twinkl littl bat…”

docs twinkl littl bat tea

D1 2 1 1 1

D2 0 0 0 1

D3 0 1 2 4

D4 0 4 0 5

D5 2 0 3 0

58

Combined term weighting

l  We can combine tf and idf (tf-idf)

diidi tfidfweight *=

docs twinkl littl bat tea

D1 0.68 0.22 0.22 0.1

D2 0 0 0 0.1

D3 0 0.22 0.44 0.4

D4 0 0.88 0 0.5

D5 0.68 0 0.66 0

59

TF-IDF normalisation

l  Normalize: force all weights to fall within a
certain range, usually between 0 and 1,
inclusive

l  Idea: normalise the term weights
–  Longer documents are not unfairly given more

weight)
–  Improves retrieval accuracy

∑ =

=
N

d idi

idi
di

idftf

idftfweight
1

22 *)(

*

60

A collection as a document
matrix

l  Each document is a vector of term weights
and the entire collection can be represented
as a matrix

l  di = (t1, t2, …, tn)

twinkl littl bat tea …

D1 0.068 0.02 0.02 0.01 …

D2 0 0 0 0.001 …

D3 0 0.022 0.11 0.002 …

D4 0 0.176 0 0.01 …

D5 0.042 0 0.04 0 …

… … … … … …

61

Questions?

62

A collection as a document
matrix

l  Each document is a vector of term weights
and the entire collection can be represented
as a matrix

l  di = (t1, t2, …, tn)

twinkl littl bat tea …

D1 0.068 0.02 0.02 0.01 …

D2 0 0 0 0.001 …

D3 0 0.022 0.11 0.002 …

D4 0 0.176 0 0.01 …

D5 0.042 0 0.04 0 …

… … … … … …

63

Storing a document matrix

l  We could store documents like this but it
would be very wasteful

twinkl littl bat tea …

D1 0.068 0.02 0.02 0.01 …

D2 0 0 0 0.001 …

D3 0 0.022 0.11 0.002 …

D4 0 0.176 0 0.01 …

D5 0.042 0 0.04 0 …

… … … … … …

64

Document matrix

l  Document matrices are very sparse
–  E.g. WSJ (1990-93)

l  74 520 documents 123 852 unique words
l  Average doc length: ~300 words
l  Average occurrence: ~200 docs
l  After indexing only 0.00065% of cells of the document

matrix are filled

l  We need a different way to store the
information contained in the matrix

65

Index data structures

l  Index data structures enable space efficient
storage of document content descriptors

l  The most common index data structure in IR is
the inverted index

l  From an inverted index we can build inverted
files

l  Inverted files are the most common data
structure for efficient storage and fast
processing of IR indexes

66

Inverted index

l  An “inverted index” is a vector index
“inverted” so that rows become columns
and columns become rows

docs t1 t2 t3
D1 1 0 1
D2 1 0 0
D3 0 1 1
D4 1 0 0
D5 1 1 1
D6 1 1 0
D7 0 1 0
D8 0 1 0
D9 0 0 1
D10 0 1 1

Terms D1 D2 D3 D4 D5 D6 D7 …
t1 1 1 0 1 1 1 0
t2 0 0 1 0 1 1 1
t3 1 0 1 0 1 0 0

67

Inverted index files

l  Documents are tokenised, stopwords
l  removed, and stemmed
l  Tokens saved with document identifier

Term DocID #terms

be 1 9

vewy 1 9

vewy 1 9

quiet 1 9

today 1 9

i 1 9

am 1 9

hunting 1 9

wabbits 1 9

i 2 16

thought 2 16

I 2 16

saw 2 16

a 2 16

puddy 2 16

cat 2 16

… … …

cat 2 16

“Be vewy vewy quiet.
Today, I am hunting
wabbits” (Doc 1)

“I thought I saw a
puddy cat. I did, I did I

saw a puddy cat”
(Doc 2)

68

Index files

l  Table is
sorted
alphabetically

Term DocID #terms

a 2 16

a 2 16

am 1 9

be 1 9

cat 2 16

cat 2 16

did 2 16

did 2 16

hunting 1 9

i 1 9

i 2 16

i 2 16

i 2 16

i 2 16

i 2 16

puddy 2 16

… …

Term DocID #terms

be 1 9

vewy 1 9

vewy 1 9

quiet 1 9

today 1 9

i 1 9

am 1 9

hunting 1 9

wabbits 1 9

i 2 16

thought 2 16

I 2 16

saw 2 16

a 2 16

puddy 2 16

cat 2 16

… … …

cat 2 16

69

Index files

l  Multiple entries for each document are merged
l  Within-document frequencies (tf) values are

calculated

0.111	
1	
am	

…	

2	

2	

1	

1	

2	

2	

1	

2	

DocID	

0.125	

0.313	

0.111	

0.111	

0.125	

0.125	

0.111	

0.125	

tf	

a	

…	

puddy	

i	

i	

hunting	

did	

cat	

be	

Term	

0.111	
1	
am	

…	

2	

2	

1	

1	

2	

2	

1	

2	

DocID	

0.125	

0.313	

0.111	

0.111	

0.125	

0.125	

0.111	

0.125	

tf	

a	

…	

puddy	

i	

i	

hunting	

did	

cat	

be	

Term	

70

Index files

l  From this we create two files:
–  Dictionary file: list all terms in the collection with

their global term weights
–  Postings file: list the occurrences of all terms in

each document, indicating also the local term
weight

71

Dictionary file

l  Collection information
–  idf weights

Term # docs idf offset

a 1 0.301 0

am 1 0.301 1

be 1 0.301 2

cat 1 0.301 3

did 1 0.301 4

hunting 1 0.301 5

i 2 0.000 6

puddy 1 0.301 8

… … …

No of docs in
which term
appears

idf weight

Where to
start
reading
postings
file

72

Offset

l  Offset can count
–  Tuples to read
–  Numbers to read
–  Bytes to read

2 0.125 1 0.111 1 0.111 2 0.125 2 0.125 1 0.111 1 0.111 2 0.313 2
0.125 …

73

Postings file

l  Which documents contain a term
–  Reduces sparse nature of data

l  Series of tuples <docID, tf weight>

2 0.125 1 0.111 1 0.111 2 0.125 2 0.125 1 0.111 1 0.111 2 0.313 2
0.125 …

term ‘a’
appears in
document 2
with tf 0.125

term ‘i’ appears in
document 1 with tf
0.111 and document 2
with tf 0.313

74

Example

l  Query ‘hunting cat’
Term # docs idf offset

a 1 0.301 0

am 1 0.301 1

be 1 0.301 2

cat 1 0.301 3

did 1 0.301 4

hunting 1 0.301 5

i 2 0.000 6

puddy 1 0.301 8

… … …

2 0.125 1 0.111 1 0.111 2 0.125 2 0.125 1 0.111 1 0.111 2 0.313 2
0.125 …

75

Index files summary

l  Index files mean fast access
–  Postings files reduce data size

l  And only store which terms appear in a document
l  And document specific information

–  Dictionary gives collection information
l  And tells us how to read postings file

l  Index files can be distributed across several
machines, be partitioned and can be accessed
in parallel

76

Advanced indexing:
word position

l  Store word positions
–  Standard postings file

–  With word positions

–  Closer query words in document appear better
match

2 0.125 1 0.111 1 0.111 2 0.125 2 0.125 1 0.111 1 0.111 2 0.313 2
0.125 …

2 0.125 5 14 1 0.111 7 …

“I thought I saw a puddy
cat. I did, I did I saw a

puddy cat”
(Doc 2)

Terms ‘a’ appears in document 2
with tf 0.125 and
appears at positions 5 and 14

77

Advanced indexing:
word position

l  Storing the word positions enables to search
and retrieve documents using exact phrases
or named entities:
–  “Bank of Scotland” and not “on the bank of the

Lock Lomond in Scotland”
–  “George Bush” and not “George fall on the bush”
–  “University of Strathclyde” and not “University of

Glasgow, Glasgow, Strathclyde”

78

Advanced Indexing: document
expansion

l  Add semantics by “expanding” the
document representations by using
knowledge structures:
–  Dictionaries
–  Thesauri
–  Ontologies

l  This enables to retrieve a document even
if a word does not appear, but some
synonym or closely related word appears

79

Advanced Indexing: document
expansion

l  E.g. if document contains word ‘book’ add
related meanings

–  album, atlas, bestseller, bible, booklet, brochure,
codex, compendium, copy, dictionary, dissertation,
edition, encyclopedia, essay, fiction, folio, handbook,
hardcover, leaflet, lexicon, magazine, manual,
monograph, nonfiction, novel, octavo, offprint,
omnibus, opus, opuscule, pamphlet, paperback,
periodical, portfolio, preprint, primer, publication,
quarto, reader, reprint, scroll, softcover, speller, text,
textbook, thesaurus, tome, tract, treatise, volume,
work, writing

l  But there might be problems of ambiguity
–  Book = reserve (v), volume (v)

l  And reduces discrimination

80

Query indexing

l  Queries are indexed too
l  “I want information on the semiotic importance of Daffy Duck and

Daffy’s role in the political hagiography of Elmer Fudd”
–  Stopword removal

l  “information semiotic importance daffy duck daffy role political
hagiography elmer fudd”

–  Stemming
l  “inform semiot import daffy duck daffy role polit hagiograph elmer

fudd”
–  Term weighting

l  informat 0.09, semiot 0.09, import 0.09, daffy 0.18,…
l  Not usually done

l  Query and documents use same representation, so it is
easier to carry out matching

81

Retrieval

l  How do we find relevant documents?

l  NEXT!

docs twinkl littl bat tea

D1 0.68 0.22 0.22 0.1

D2 0 0 0 0.1

D3 0 0.22 0.44 0.4

D4 0 0.88 0 0.5

D5 0.68 0 0.66 0

Q1 = “twinkle littl”
Q2 = “tea bat”

Q1 Q2

D1 ? ?

D2

D3

D4

D5

82

Questions?

83

Retrieval: outline

l  How do we formulate IR queries?
l  How do we evaluate the relevance of a

document to a query?
–  Retrieval models

l  Relevance feedback
–  Methods for automatically modifying user query
–  Probabilistic model (the probability estimation

requires users feedback)
l  Results presentation

–  Elements of interfaces for IR systems

84

Last time

l  How do we find relevant documents?

docs twinkl littl bat tea

D1 0.68 0.22 0.22 0.1

D2 0 0 0 0.1

D3 0 0.22 0.44 0.4

D4 0 0.88 0 0.5

D5 0.68 0 0.66 0

Q1 = “twinkle littl”
Q2 = “tea bat”

Q1 Q2

D1 ? ?

D2

D3

D4

D5

85

Retrieval models

l  A retrieval model is a mathematical model that enables
to associate a value (score) to a pair (d, q)

–  Often called retrieval status value (RSV)

l  This value is an estimate of the relevance of d to q
l  Depending on the model the RSV has different

interpretations
l  Three major retrieval models

–  Boolean model
–  Vector-space model
–  Probabilistic model

86

Boolean retrieval

l  Oldest model
l  Based on Boolean logic
l  Terms and connectors
l  Terms – query words ‘cat’ ‘house’ ‘bat’
l  Connectors

–  AND, OR, NOT
–  Similar to structured language

87

Example Boolean queries

l  cat
–  documents containing ‘cat’

l  cat OR dog
–  docs containing ‘cat’ or docs containing ‘dog’

l  cat AND dog
–  docs containing ‘cat’ and ‘dog’

l  (cat AND dog) OR budgie
–  docs containing ‘cat’ and ‘dog’ or docs containing budgie

l  NOT budgie
–  docs that do not contain budgie

l  NOT ((cat AND dog AND budgie) OR (cat AND
budgie) OR (cat AND dog) OR (cat))

–  ????

88

Boolean queries

l  Usually expressed as infix operators
l  ((a AND b) OR (c and b))

l  NOT is a prefix operator
l  NOT (b), (c AND (NOT (b)))

l  AND and OR are n-ary
l  (a AND b AND c)

l  Heavy use of rules
l  NOT (a) AND NOT (b) = NOT (a OR b)
l  NOT (a) OR NOT (b) = NOT (a AND b)
l  NOT (NOT (a)) = a

89

Boolean logic

term1

term3

term2

doc1

doc3

doc2

doc4

doc5
doc6

doc7

doc8

90

Boolean retrieval

l  Typically no term weighting
l  Run a query, get a result set

–  Unordered
–  Popular terms – big result set
–  Rare terms – small result set
–  AND leads to big result set
–  OR leads to small result set
–  Bad combination – huge result set or empty result set

91

Wrong set size

l  Two choices
–  Run new query on entire collection
–  Run modified query on results set

l  Example:
–  (redford AND newman) -> S1 1450 documents
–  S1 AND Sundance -> S2 898 documents

92

Advantages/disadvantages

l  Advantages
–  Complete

expressiveness
–  Exact queries
–  Simple to program
–  Boolean algebra

l  experts

l  Disadvantages
–  Artificial language

l  Unintuitive
l  Misunderstood

–  Too many, too few results
–  Unordered output

l  Date at best

93

Extensions

l  Trying to overcome poor points
–  Use of term weights
–  Proximity search
–  Filters
–  User interfaces

94

Proximity search

l  Proximity: terms occur within K positions of each other
–  pen w/5 paper

l  (a) “pen and paper” matches
l  (b) “my pen is on my desk next to my paper” does not match

–  So need to store position in postings file
–  A “near” function can be more vague

l  near (pen, paper) – both (a) and (b) match
–  Phrases – “Bill Clinton”

l  Phrase variant – “information retrieval” “retrieval of information”

95

Filters

l  Reduce set of candidate documents
–  Restrictions on documents

l  Date range
l  Internet domain (.uk, .com, .strath.ac.uk)
l  Author
l  Size
l  Limit number of documents returned

96

Partial-match models

l  Ranked output
–  Documents ranked according to how closely they

match query
l  Advantages over Boolean

–  No query syntax
l  Natural language
l  Easier to modify query

–  Documents can partially match the query
l  Easier to interpret results

97

Simplest way to rank documents

l  Query – littl bat
docs twinkl littl bat tea sim

D1 0.054 0.09 0.36 0.242 0.45

D2 0 0 0 0.027 0.00

D3 0 0.1 2 0.005 2.10

D4 0.031 0.08 0 0.297 0.08

D5 0 0 0.08 0 0.08

∑
=

=

=
qn

i
ijj wdqsim

1
),(

98

Vector-space model

l  1960’s mostly by G. Salton
l  Very influential model
l  Documents and queries are vectors
l  Simple example:

docs Term1 Term2

D1 0.5 1

D2 1 0

D3 0 0.5

D4 0.25 0.25

D1 = <0.5,1>

D2 = <1,0>

D3 = <0,0.5>

D4 = <0.25,0.25>

99

A collection as a vector space

t1

t2

t3
D1

D2

D10
D3

D9

D4

D7
D8

D5

D11

D6

More about this later!

100

Vectors

l  Vectors define a position in space
l  Size of vectors = number of words in collection

1

1

term1

term2
D1

D2

D4

D3

D1 = <0.5,1>

D2 = <1,0>

D3 = <0,0.5>

D4 = <0.25,0.25>

101

More complicated example

l  Each term is an axis
–  Position on axis = weight of term in document

D3

D1

D4

D5

term1

term2

term3

term4

term5

term6

102

Retrieval

1

term1

term2
D1

D2 D4

D3

Q

l  The ‘closer’ two
documents are in
space, the more
similar they are

l  The closer a query
is to a document,
the better the
query matches

103

Similarity measures

l  Simple matching (coordination level)

l  Cosine correlation coefficient
l  (most important)

qddqRSV ∩=),(

5.05.0 ||*||
),(

dq
dq

dqRSV
∩

=

104

Simple matching

Similarity = size of intersection

document

query

105

Simple matching

l  Simple matching
–  Intersection of terms in query and document
–  Higher intersection

l  More terms in common
–  If terms have weights

l  Share more higher weighted terms

 ()∑

=

=
n

i
qidi wwqdRSV

1

*),(

106

Problems with simple matching

document

query

document

query

Intersection
relative to
document

length

107

Cosine matching

l  Cosine correlation matching
–  Matching cosine of angles
–  Bigger difference, smaller value

l  E.g. cosine(0) = 1, cosine(180) = -1
–  Take into consideration the length of the vectors

()

() ()∑∑

∑

==

=

∗

=
n

i
q

n

i
d

n

i
qidi

ii
ww

ww
qdRSV

1

2

1

2

1
*

),(

doc
query

108

Advantages/disadvantages

l  Advantages
–  Easy to understand
–  Has a geometric

interpretation
–  Works generally well

with any similarity
measure

–  Better performance
than Boolean (mostly)

l  Disadvantages
–  No real theoretical basis
–  Easy to modify with ad-hoc tricks
–  Dimensions are not orthogonal

–  terms are not
independent

–  Less control?

109

Questions?

110

Probabilistic model

l  It is a best-match retrieval model
–  Rank documents for presentation to user

l  Vector-space uses geometric analogy
l  Probabilistic model tries to evaluate probability of observing

relevance given a specific pair (q, d)

–  Query in natural languages
l  No query syntax

l  The probabilistic model has implicit the notion
of relevance feedback
–  Relevance feedback is a query reformulation

technique

111

Relevance feedback

l  Motivations
–  Queries can be difficult to create

l  User’s often don’t know what they want
–  Verbalising a query can be hard

l  But recognising relevant information is usually easier

l  Relevance feedback
–  Showing system what you want
–  System modifying your query

112

Relevance feedback

l  What it’s trying to do
–  Use examples of documents the user likes to

1.  Detect which words are useful
–  New query words
–  Query expansion

2.  Detect how useful these words are
–  Change weights of query words
–  Term re-weighting

3.  Use new query for retrieval

113

Query expansion

l  Add useful terms to the query
–  Terms that appear often in relevant documents
–  Trying to compensate for poor queries

l  Usually short, can be ambiguous, use too many common
words

l  Add better terms to user’s query

–  Trying to emphasise recall

114

Term re-weighting

l  Re-weight query terms
–  Start off with weights derived from query

–  E.g. “daffy duck” daffy 1 duck 1
–  E.g. “daffy daffy duck” daffy 2 duck 1

–  Assign new weights according to importance in
relevant documents

–  Personalised searching
l  Which query terms are important to the user

–  Trying to improve precision

115

Vector space model

l  D2, D3 relevant
l  D1, D4 not relevant

–  Aim: make Q vector
closer to D2,D3 and
further from D1,D4

–  Result: Q’ is the new
query vector

term1

term2
D1

D2

D4
D3

Q

Q’

116

Advantages of relevance feedback

l  Advantages:
–  RF means altering the user’s query
–  Can be very effective
–  Breaks down search into chunks, gradually

improving the query
–  Less emphasis on query, more on documents

l  Disadvantages:
–  Relevance is binary for systems, but not for users
–  Only parts of documents may be relevant
–  No feedback to users

l  How does it work?

117

Probabilistic model

l  Alternative to vector-space
l  W. Maron, S. Robertson , K.Sparck Jones, C. J. van

Rijsbergen and others (1960s onwards)
l  Designed specifically for relevance feedback

l  Estimate probability of relevance
–  Observing relevance given a pair (q, d)
–  Use terms as evidence
–  Estimate probability that a query term will appear

in a relevant document
–  Re-weights query terms using relevance

information

118

Probabilistic model

l  Assign new weights for query terms based on
relevant/non-relevant documents

l  Give higher weights to important terms:

Relevant Not-relevant
Documents
contain term

r n-r n

Documents do not
contain term

R-r N-n-R+r N-n

R N-R

119

Probabilistic term re-weighting
formula

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+−−+
−+
−+

+

=

)5.0(
)5.0(
)5.0(

)5.0(

log)(

tt

tt
t

t

rRnN
rn
rR

r

tw

Relevant documents with t

Non-relevant
documents with t

Relevant documents without t

Non-relevant documents without t

Document score based on sum of weights of query terms in documents

120

Probabilistic model

l  Advantages over vector-space
–  Strong theoretical basis

l  based on probability theory (very well understood)
l  easy to extend

l  Disadvantages
–  Models are often more complicated than vector

space models
–  No term frequency weighting

l  Which is better vector space or probabilistic?
–  Both are approximately as good as each other

121

Relevance feedback

l  Problems with RF and users
–  Relevance is binary for systems

l  But not for users
–  Only parts of documents may be relevant

l  Sentence, paragraph, title, …

–  No feedback to users
l  How does it work?
l  What does it mean?

122

Questions?

Topics still missing

l  More advanced models (e.g. language models,
topics models, logical models, …)

l  Evaluation of IR Systems
l  Indexing and retrieval of social media and

multimedia
l  Many more …

123

Conclusions

l  Very fast introduction to IR!
l  Hope it gave you an understanding of the many

issues involved
l  Should enable you to understand the remaining

lectures
l  For more information see one of the many

textbooks in IR that are currently available!

124

Thank you for listening!

l  Last chance to ask questions …

125

