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IR and Databases
The Logic View

e DB: given query g, find objects o with o — g

@ IR: given query g, find documents d with high values of
P(d — q)

@ DB is a special case of IR!
(in a certain sense)
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Introduction

IR and Databases
The Logic View

@ DB: given query g, find objects o with 0 — ¢q

@ IR: given query g, find documents d with high values of
P(d — q)

@ DB is a special case of IR!
(in a certain sense)

This tutorial: Focusing on the logic view

@ Inference

@ Vague predicates

@ Query language expressiveness

A\




Inference

@ IR with the Relational Model
@ The Probabilistic Relational Model
@ Interpretation of probabilistic weights

@ Extensions
@ Disjoint events
@ Relational Bayes
@ Probabilistic rules
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Inference
IR with the Relational Model

Relational Model

Projection
index
DOCNO | TERM

1 ir
1 db topic
2 ir ir
3 db db
3 oop oop
4 ir ai
4 ai
5 db
5 oop

Projection: what is the collection about?
topic(T) :- index(D,T).
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Inference
IR with the Relational Model

Relational Model

Selection
index
DOCNO | TERM
1 ir
L qb aboutir
2 ir —1
3 db
2

3 oop 4
4 ir
4 ai
5 db
5 oop

Selection: which documents are about IR?
aboutir(D) :- index(D,ir).
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Inference
IR with the Relational Model

Relational Model

Join
index
DOCNO | TERM
1 - author
DOCNO | NAME )
1 db - irauthor
) 1 smith _—
2 ir . smith
2 miller .
3 db . miller
3 johnson .
3 oop . firefly
4 . 4 firefly bradford
Ih 4 bradford radtor
4 al 5 bates
5 db
5 oop

Join: who writes about IR?
irauthor(A) :- index(D,ir) & author(D,A).
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IR with the Relational Model

Relational Model

Union
index
DOCNO | TERM
1 ir .
1 db irordb
) 1
2 ir 5
3 db
3
3 oop
) 4
4 ir 5
4 ai
5 db
5 oop

Union: which documents are about IR or DB?
irordb(D) :- index(D,ir).
irordb(D) :- index(D,db).
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Inference
IR with the Relational Model

Relational Model

Difference
index
DOCNO | TERM

1 ir
1 db
2 ir irnotdb
3 db 2
3 oop 4
4 ir
4 ai
5 db
5 oop

Difference: which documents are about IR, but not DB?
irnotdb(D) :- index(D,ir) & not(index(D,db)).
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Inference
The Probabilistic Relational Model

The Probabilistic Relational Model

[Fuhr & Roelleke 97] [Suciu et al 11]

index

5] DOCNO | TERM
0.8 1 IR
0.7 1 DB
0.6 2 IR
0.5 3 DB
0.8 3 OO0P
0.9 4 IR
0.4 4 Al
0.8 5 DB
0.3 5 OOP
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Inference
The Probabilistic Relational Model

The Probabilistic Relational Model

[Fuhr & Roelleke 97] [Suciu et al 11]

index

5] DOCNO | TERM
0.8 1 IR
0.7 1 DB
0.6 2 IR
0.5 3 DB
0.8 3 OO0P
0.9 4 IR
0.4 4 Al
0.8 5 DB
0.3 5 OOP

Which documents are about DB?
aboutdb(D) :- index(D,db).
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The Probabilistic Relational Model

[Fuhr & Roelleke 97] [Suciu et al 11]

index
B | DOCNO | TERM
0.8 1 IR
g'g ; 523 aboutdb
0.5 3 | DB 8; ;
0.8 3 OO0P 0-8 5
0.9 4 IR '
0.4 4 Al
0.8 5 DB
0.3 5 OOP

Which documents are about DB?
aboutdb(D) :- index(D,db).
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The Probabilistic Relational Model

[Fuhr & Roelleke 97] [Suciu et al 11]

index

3 | DOCNO | TERM

0.8 1 IR

8'2 ; %B aboutdb |

0:5 3 DB 0711 aboutirdb
08 3 00P 0513 0.8*0.7 | 1
0.9 4 | R 0.8 |5

0.4 4 Al

0.8 5 DB

0.3 5 O0oP

Which documents are about DB?
aboutdb(D) :- index(D,db).

Which documents are about IR and DB?
aboutirdb(D) :- index(D,ir) & index(D,db).
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Inference
The Probabilistic Relational Model

Extensional vs. intensional semantics

docterm link
3 | DOC | TERM 55| T
0.9 dl Jir 07 | d2 | dl
0.5 dl db '

about(D,T) :- docTerm(D,T).
about(D,T) :- 1link(D,D1) & about(D1,T)
q(D) :- about(D,ir) & about(D,db).
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Inference
The Probabilistic Relational Model

Extensional vs. intensional semantics

docterm link
3 | DOC | TERM 55| T
0.9 dl Jir 07 | d2 | dl
0.5 dl db '

about(D,T) :- docTerm(D,T).
about(D,T) :- 1link(D,D1) & about(D1,T)
q(D) :- about(D,ir) & about(D,db).

extensional semantics:
weight of derived fact as function of weights of subgoals
P(q(d2)) = P(about(d2,ir)) - P(about(d2,db)) =
(0.7-0.9) - (0.7 - 0.5)
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Inference
The Probabilistic Relational Model

Extensional vs. intensional semantics

docterm link
3 | DOC | TERM 55| T
0.9 dl Jir 07 | d2 | dl
0.5 dl db '

about(D,T) :- docTerm(D,T).
about(D,T) :- 1link(D,D1) & about(D1,T)
q(D) :- about(D,ir) & about(D,db).

extensional semantics:
weight of derived fact as function of weights of subgoals
P(q(d2)) = P(about(d2,ir)) - P(about(d2,db)) =
(0.7-0.9) - (0.7 - 0.5)

Problem

“improper treatment of correlated sources of evidence” [Pearl 88]
— extensional semantics only correct for tree-shaped inference
structures
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Intensional semantics

weight of derived fact as function of weights of underlying ground
facts
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Intensional semantics

weight of derived fact as function of weights of underlying ground
facts

Method: Event keys and event expressions

docterm
15} ‘ K ‘ DOC ‘ TERM
0.9 | dT(d1,ir) d1

0.5 | dT(d1,db) | d1

link
Blw _|S|T
0.7 | 1(d2,d1) | d2 | d1

ir

db
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The Probabilistic Relational Model

Intensional semantics

weight of derived fact as function of weights of underlying ground
facts

Method: Event keys and event expressions

docterm

15} ‘ K ‘ DOC ‘ TERM
0.9 | dT(d1,ir) dl ir
0.5 | dT(dl,db) | d1 | db
?- docTerm(D,ir) & docTerm(D,db).
gives
d1 [dT(d1,ir) & dT(d1,db)]

link
Blw _|S|T
0.7 | 1(d2,d1) | d2 | d1
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The Probabilistic Relational Model

Intensional semantics

weight of derived fact as function of weights of underlying ground
facts

Method: Event keys and event expressions

docterm
15} ‘ K ‘ DOC ‘ TERM
0.9 | dT(d1,ir) dl ir
0.5 | dT(dl,db) | d1 | db
?- docTerm(D,ir) & docTerm(D,db).
gives
d1l [dT(d1,ir) & dT(d1,db)] 0.9-05=0.45

link
Blw _|S|T
0.7 | 1(d2,d1) | d2 | d1
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Event keys and event expressions

docterm link

B | | DOC | TERM 5\”; ST
0.9 [ dT(dLin) | dl |ir

05 dTEdl,dt))) d1 | db 0.7 [ I(d241) [ d2 | d1

about(D,T) :- docTerm(D,T).
about(D,T) :- 1link(D,D1) & about(D1,T)
?- about(D,ir) & about(D,db).

gives

dl [dT(d1l,ir) & dT(d1,db)] 0.9-0.5=0.45

d2 [1(d2,d1) & dT(d1l,ir) & 1(d2,d1) & dT(d1,db)]
0.7-0.9-0.5=0.315
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The Probabilistic Relational Model

Recursion

about(D,T) :- docTerm(D,T).
about(D,T) :- link(D,Dl) & about(D1,T).

-—--> docterm
09\

db<—7d1% d2 Link

?- about(D,ir)
dl [dT(d1,ir) | 1(d1,d2) & 1(d2,d3) & 1(d3,d1) &

dT(di,ir) | ...] 0.900
d3 [1(d3,d1) & dT(d1,ir)] 0.720
d2 [1(d2,d3) & 1(d3,d1) & dT(d1l,ir)] 0.288

?- about(D,ir) & about(D,db)
dl [dT(d1l,ir) & dT(d1,db)] 0.450
d3 [1(d3,d1) & dT(d1l,ir) & 1(d3,d1) & dT(d1,db)] 0.360
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Inference
The Probabilistic Relational Model

Computation of probabilities for event expressions

@ transformation of expression into disjunctive normal form
@ application of sieve formula:
o simple case of 2 conjuncts: P(aV b) = P(a)+ P(b) — P(aAb)
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Inference
The Probabilistic Relational Model

Computation of probabilities for event expressions

@ transformation of expression into disjunctive normal form
@ application of sieve formula:
o simple case of 2 conjuncts: P(aV b) = P(a)+ P(b) — P(aAb)
e general case:
¢; — conjunct of event keys

P(lcy V...V ¢,) =

Z(—l)i_l > Pl A A ).

1<ji<...<ji<n

@ ~~ exponential complexity
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The Probabilistic Relational Model

Computation of probabilities for event expressions

@ transformation of expression into disjunctive normal form
@ application of sieve formula:
o simple case of 2 conjuncts: P(aV b) = P(a)+ P(b) — P(aAb)
e general case:
¢; — conjunct of event keys

P(lcy V...V ¢,) =

Z(—l)i_l > Pl A A ).

1<ji<...<ji<n

@ ~~ exponential complexity

@ ~~ use only when necessary for correctness
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The Probabilistic Relational Model

Computation of probabilities for event expressions

@ transformation of expression into disjunctive normal form
@ application of sieve formula:
o simple case of 2 conjuncts: P(aV b) = P(a)+ P(b) — P(aAb)
e general case:
¢; — conjunct of event keys

P(lcy V...V ¢,) =

Z(—l)i_l > Pl A A ).

1<ji<...<ji<n

@ ~~ exponential complexity
@ ~~ use only when necessary for correctness
@ see [Dalvi & Suciu 07]
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Inference

Interpretation of probabilistic weights

Possible worlds semantics

0.9 docTerm(dl,ir).

P(Wi) =0.9: {docTerm(dl,ir)}
P(W,) =0.1: {}
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Inference

Interpretation of probabilistic weights

0.6 docTerm(dl,ir). 0.5 docTerm(dil,db).

Possible interpretations:

h: P(W;) =0.3: {docTerm(dl,ir)}

P(W,) = 0.3: {docTerm(d1,ir), docTerm(dl,db)}
) =0.2: {docTerm(d1,db)}

)=0.2: {}

I»: ) =0.5: {docTerm(dl,ir)}

) =0.1: {docTerm(dl,ir), docTerm(d1l,db)}
)

)

)

)

4: {docTerm(d1,db)}

1: {docTerm(dl,ir)}
5: {docTerm(d1,ir), docTerm(dl,db)}
4

2t
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Inference

Interpretation of probabilistic weights

0.6 docTerm(dl,ir). 0.5 docTerm(dil,db).

Possible interpretations:

h: P(W;) =0.3: {docTerm(dl,ir)}

P(W,) = 0.3: {docTerm(d1,ir), docTerm(dl,db)}
) =0.2: {docTerm(d1,db)}

)=0.2: {}

I»: ) =0.5: {docTerm(dl,ir)}

) =0.1: {docTerm(dl,ir), docTerm(d1l,db)}
)

)

)

)

4: {docTerm(d1,db)}

1: {docTerm(dl,ir)}
5: {docTerm(d1,ir), docTerm(dl,db)}
4

2t

probabilistic logic:
0.1 < P(docTerm(dl, ir)&docTerm(d1,db)) < 0.5
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Inference

Interpretation of probabilistic weights

0.6 docTerm(dl,ir). 0.5 docTerm(dil,db).

Possible interpretations:

h: P(W;) =0.3: {docTerm(dl,ir)}

P(W,) = 0.3: {docTerm(d1,ir), docTerm(dl,db)}
) =0.2: {docTerm(d1,db)}

)=0.2: {}

b: ) =0.5: {docTerm(dl,ir)}

) =0.1: {docTerm(dl,ir), docTerm(d1i,db)}
) 4: {docTerm(d1,db)}

) 1: {docTerm(dl,ir)}

) 5: {docTerm(d1,ir), docTerm(dl,db)}
) 4

2t

probabilistic logic:

0.1 < P(docTerm(dl, ir)&docTerm(d1,db)) < 0.5
probabilistic Datalog with independence assumptions:
P(docTerm(dl, ir)&docTerm(d1,db)) = 0.3
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Extensions

Disjoint events

B | City | State
0.7 | Paris | France
0.2 | Paris | Texas
0.1 | Paris | Idaho
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Inference

Extensions

Disjoint events

B | City | State
0.7 | Paris | France
0.2 | Paris | Texas
0.1 | Paris | Idaho

Interpretation:

P(W1) =0.7: {cityState(paris,
P(W;) = 0.2: {cityState(paris,
P(W3) = 0.1: {cityState(paris,

france) }
texas) }
idaho)}
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Extensions

Relational Bayes

[Roelleke et al. 07]

Role of the relational Bayes: Generation of a probabilistic database

Non-probabilistic | Bayes Probabilistic
_>
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Extensions

Relational Bayes
Example: P(Nationality | City)

nationality_and_city ]
| Nationality [ City |

— ionality_cit

"British” "London” [ nationality. y ]
" Britioh Srpin [ P(Nationality[City) || Nationality | City |
" British” " London” 0.600 " British” "London"

" Scottish” " London” 0.200 " Scottish” "London"

" French” " London” 0.200 " French” "London"
et | b | aeisciol) o500 | Lgemar | tombur

" Danish” "Hamburg” 0.250 " British” "Hamburg”

" British” "Hamburg" 0.667 " German” " Dortmund”

" German” " Dortmund” 0.333 " Turkish"” " Dortmund”

" German” " Dortmund” 1.000 " Scottish” " Glasgow”

" Turkish” " Dortmund”

" Scottish” " Glasgow”

1 | # P(Nationality | City):
nationality_city SUM(Nat, City) :—
3 nationality_and_city (Nat, City) | (City);

N
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Extensions

Relational Bayes
Example: P(t|d)

term fefrf(igfrie(—lgilnl"ci)D\OE:II)?clz_j) p-t-d SUM(Term, Docld) :-
Term Docld BEld T Bocid L term(Term, Docld) | (Docld);
— (t]d) [ Term [ Doc P(t]d) ][ Term | Docid
sailing docl —
0.50 sailing docl —
boats docl 0.50 sailing docl
P 0.50 boats docl
sailing doc2 e 0.50 boats docl
0.33 sailing doc2 L
boats doc2 0.67 sailing doc2
e 0.33 boats doc2
sailing doc2 L 0.33 boats doc2
0.33 sailing doc2
east doc3 0.33 + doc3 0.33 east doc3
coast doc3 0'33 cas + doc3 0.33 coast doc3
sailing | doc3 : coas ¢ 0.33 sailing | doc3
- 0.33 sailing doc3 -
sailing doc4 . 1.00 sailing doc4
boats doch 1.00 sailing docd 1.00 boats doch
1.00 boats docb5 .
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Extensions

Probabilistic rules
Rules for deterministic facts:

0.7 likes-sports(X) :- man(X).
0.4 likes-sports(X) :- woman(X).
man (peter) .
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Inference

Extensions

Probabilistic rules
Rules for deterministic facts:

0.7 likes-sports(X) :- man(X).
0.4 likes-sports(X) :- woman(X).
man (peter) .

Interpretation:
P(W;) = 0.7: {man(peter), likes-sports(peter)}
P(W,) = 0.3: {man(peter)}
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Inference

Extensions

Probabilistic rules
Rules for uncertain facts:

# gender is disjoint on the first attribute

0.7 1-sports(X) :— gender (X,male).
0.4 l-sports(X) :- gender (X,female).
0.5 gender(X,male) := human(X).

0.5 gender (X,female) :- human(X).
human (jo) .
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Inference

Extensions

Probabilistic rules
Rules for uncertain facts:

# gender is disjoint on the first attribute

0.7 l-sports(X) :— gender (X,male).
0.4 l-sports(X) :- gender (X,female).
0.5 gender(X,male) := human(X).

0.5 gender (X,female) :- human(X).

human (jo) .

Interpretation:

P(W;) = 0.35: {gender(jo,male), l-sports(jo)}
P(W,) = 0.15: {gender (jo,male)}

P(W3) = 0.20: {gender(jo,female), l-sports(jo)}
P(W3) = 0.30: {gender (jo,female)}

?- 1l-sports(jo)
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Inference

Extensions

Probabilistic rules
Rules for uncertain facts:

# gender is disjoint on the first attribute

0.7 l-sports(X) :— gender (X,male).
0.4 l-sports(X) :- gender (X,female).
0.5 gender(X,male) := human(X).

0.5 gender (X,female) :- human(X).

human (jo) .

Interpretation:

P(W;) = 0.35: {gender(jo,male), l-sports(jo)}
P(W,) = 0.15: {gender (jo,male)}

P(W3) = 0.20: {gender(jo,female), l-sports(jo)}
P(W3) = 0.30: {gender (jo,female)}

?7- 1-sports(jo) P(W;y) + P(W3) = 0.55
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Extensions

Probabilistic rules
Rules for independent events

sameauthor (D1,D2) :- author(D1,X) & author(D2,X).
0.5 1ink(D1,D2) :- refer(D1,D2).
0.2 1ink(D1,D2) :- sameauthor(D1,D2).

?? 1ink(D1,D2) :- refer(D1,D2) & sameauthor(D1,D2).

P(l|r), P(l|s) — P(l|r As)?
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Extensions

Rules for independent events
Modeling probabilistic inference networks

0.7 1ink(D1,D2) :- refer(D1,D2) & sameauthor(D1,D2).
0.5 1ink(D1,D2) :- refer(D1,D2) & not(sameauthor(D1,D2)).
0.2 1ink(D1,D2) :- sameauthor(D1,D2) & not(refer(D1,D2)).

Probabilistic inference networks,
rules define link matrix

refer saneaut hor

ank



Vague Predicates

@ The Logical View on Vague Predicates
@ Vague Predicates in IR and Databases
@ Probabilistic Modeling of Vague Predicates
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Vague Predicates
Motivating Example

"led tv 46inch"

Showing 1- 16 of 3,841 Results

T

Samsung LN46ES50 46-Inch 1080p 60Hz LCD HDTV by Samsuny

F479-89 Click for product details > @3
Order in the next 5 hours and et it by Wednesday, Jan 16 E“lele for FREE Super Saver Shipping.
Electronics: See all 3,536 tems

More Buying Choices
$463.80 used & new (14 offers)

Samsung LN46D550 46-Inch 1080p 60Hz LCD HDTV (Black) by Samsung
s200.00 $599.27 (161)
anly 15 left in stack - order soon. cs: See all 3,536 tams

More Buying Choices
$599.27 new (4 offers)
$490.00 used (10 ofers)

Cheetah Mounts APTMM2B Flush Tilt Dual Hook (1.3" from wall) Flat Screen
Chestah

540,00 $27.99 2,125
Order in the next 7 hours and get t by Wednesday, Jan 16 If, in TV Accessories
More Buying Choic es Eligible for FREE Super Saver Shipping.

B Flardromimes Caa ol A EAG & orc
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Vague Predicates
Motivating Example

"led tv 45inch”

Showing 1- 16 of 2 617 Results

RCA 32LB45RQ 324nch Full 1080p 60Hz LCD HDTV byRCA

$228.38 used (4 offers) FoRAok 128
Electronics See all 1,914 iterns.

RCA 42LB45RQ 424nch 1080p 60Hz LCD HDTV (Black) by RCA
$476.99 ik (138

Onbi 1 left in stock - arder soon. Sea neveer varsion of this item

Electronics Si 111,914 it
More Buying Choices ectronics See all 1,814 iterns

$476.99 new (2 Offers)
$333.67 used (3 ofers)

RCA 22LB45RQD 22dnch Full 1080p LCD/DVD Combo HDTV iy RCA

5220.99 $219.99 Fokcd 180)

Only 1 let in stock - order soon. Elecfronics See all 1,914 iterns
More Buying Choices

$188.99 new (3 Offers)

$125.00 used (19 offers)
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The Logical View on Vague Predicates

Propositional vs. Predicate Logic

@ Current IR systems are based on proposition logic
(query term present/absent in document)
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@ Similarity of values not considered



Bridging IR and DBs
Vague Predicates
The Logical View on Vague Predicates

Propositional vs. Predicate Logic

@ Current IR systems are based on proposition logic
(query term present/absent in document)

@ Similarity of values not considered

@ but multimedia IR deals with similarity already




Bridging IR and DBs
Vague Predicates
The Logical View on Vague Predicates

Propositional vs. Predicate Logic
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@ but multimedia IR deals with similarity already
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Vague Predicates
The Logical View on Vague Predicates

Propositional vs. Predicate Logic

@ Current IR systems are based on proposition logic
(query term present/absent in document)

@ Similarity of values not considered
@ but multimedia IR deals with similarity already

@ ~> transition from propositional to predicate logic necessary
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Vague Predicates
The Logical View on Vague Predicates

Propositional vs. Predicate Logic

@ Current IR systems are based on proposition logic
(query term present/absent in document)

Similarity of values not considered
but multimedia IR deals with similarity already
~ transition from propositional to predicate logic necessary

= Probabilistic databases / Datalog are already based on
predicate logic!
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The Logical View on Vague Predicates

Vague Predicates in Probabilistic Datalog

[Fuhr & Roelleke 97] [Fuhr 00]

@ Example: Shopping 45 inch LCD TV

@ vague predicates as builtin predicates:

X=Y

@ query(D):- Category(D,tv) &
type(D,1lcd) & size(D,X) &
~(X,45)

~Y
8 | X |Y
0.7 | 42 | 45
0.8 |43 | 45
0.9 |44 | 45
1.0 | 45 | 45
0.9 | 46 | 45
0.8 | 47 | 45
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Vague Predicates
Vague Predicates in IR and Databases

Data types and vague predicates in IR

Data type: domain + (vague) predicates

e Language (multilingual documents) /
(language-specific stemming)
Person names / “his name sounds like Jones”
Dates / “about a month ago”

°
°

@ Amounts / “orders exceeding 1 Mio $"

@ Technical measurements / “at room temperature”
°

Chemical formulas
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Vague Predicates in IR and Databases

Vague Criteria in Fact Databases

"I am looking for a 45-inch LCD TV with
@ wide viewing angle
@ high contrast
@ low price

@ high user rating”

— vague criteria are very frequent in end-user querying of fact
databases

— but no appropriate support in SQL
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Vague Predicates
Vague Predicates in IR and Databases

Vague Criteria in Fact Databases

"I am looking for a 45-inch LCD TV with
@ wide viewing angle
@ high contrast
@ low price

@ high user rating”

— vague criteria are very frequent in end-user querying of fact
databases

— but no appropriate support in SQL

vague conditions — similar to fuzzy predicates
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Probabilistic Modeling of Vague Predicates

Probabilistic Modeling of Vague Predicates

[Fuhr 90]
@ learn vague predicates from .
feedback data rito
@ construct feature vector 0s

X(qi, d;) from query value q;
and document value d;
(e.g. relative difference)

-045 -0,35 -0,25 -0,15 -0,06 005 015 025 035 045
5 04 03 -02 -01 0 01 02 03 04 05

@ apply logistic regression o
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@ Retrieval Rules, Joins, Aggregations and Restructuring
@ Expressiveness in XML Retrieval
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about(D,T) :- docTerm(D,T).

consider document linking / anchor text
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Expressiveness
Formulating Retrieval Rules

about(D,T) :- docTerm(D,T).

consider document linking / anchor text
about(D,T) :- 1link(D1,D),about(D1,T).

consider term hierarchy
about(D,T) :- subconcept(T,T1) & about(D,T1).

field-specific term weighting
0.9 docTerm(D,T) :- occurs(D,T,title).
0.5 docTerm(D,T) :- occurs(D,T,body).
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irauthor(N) :— about(D,ir) & author(D,N).
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Expressiveness
Joins

IR authors:

irauthor(N) :— about(D,ir) & author(D,N).

Smith’s IR papers cited by Miller

?- author(D,smith) & about(D,ir) &
author(D1,miller) & cites(D,D1).
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Aggregation (1)

Who are the major IR authors?

index
B | DNO | TERM author
0.9 1 ir DNO ‘NAME irauthor
0.8 1 db 1 smith 0.98 | smith
0.6 2 ir 2 miller 0.6 miller
0.8 3 ir 3 smith
0.7 3 ai

irauthor(A) :- index(D,ir) & author(D,A).
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Expressiveness
Aggregation (1)

Who are the major IR authors?

index
B | DNO | TERM author
0.9 1 ir DNO ‘NAME irauthor
0.8 1 db 1 smith 0.98 | smith
0.6 2 ir 2 miller 0.6 miller
0.8 3 ir 3 smith
0.7 3 ai

irauthor(A) :- index(D,ir) & author(D,A).

Aggregation through projection!
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Expressiveness
Aggregation (2)

Who are the major IR authors?

index
5 | DNO | TERM author
0.9 1 ir DNO ‘NAME irauths
0.8 1 db 1 smith 1.7 | smith
0.6 2 ir 2 miller 0.6 | miller
0.8 3 ir 3 smith
0.7 3 ai

Aggregation through summing:

irauth(D,A) :- index(D,ir) & author(D,A).
irauths SUM(Name) :- irdbauth(Doc,Name) | (Name)
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[Fuhr & Lalmas 07]
Content Typing

Object Types—
Data Types
Text only T
| | | |
T é 1 T
é@b \5\0 (\\Q}b Q'g@ \»@& Structure
SRS > + &
S & +



Bridging IR and DBs

Expressiveness

Expressiveness in XML Retrieval

Expressiveness in XML Retrieval

[Fuhr & Lalmas 07]
Content Typing

Object Types

Data Types ~

Structure
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XML structure: 1. Nested Structure

@ XML document as hierarchical
structure

@ Retrieval of elements (subtrees)

@ Typical query language does not
allow for specification of structural
constraints

@ Relevance-oriented selection of
answer elements: return the most
specific relevant elements
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XML structure: 2. Named Fields

@ Reference to elements
through field names only

@ Context of elements is
ignored
(e.g. author of article vs.
author of referenced paper)

@ Post-Coordination may lead
to false hits
(e.g. author name — author
affiliation)

Example: Dublin Core

<oai_dc:dc xmlns:dc=

"http://purl.org/dc/elements/1.1/">

<dc:title>Generic Algebras
</dc:title>

<dc:creator>A. Smith (ESI),

B. Miller (CMU)</dc:creator>

<dc:subject>0rthogonal group,

Symplectic group</dc:subject>

<dc:date>2001-02-27</dc:date>

<dc:format>application/postscript</dc:

<dc:identifier>ftp://ftp.esi.ac.at/pub

<dc:source>ESI preprints

</dc:source>

<dc:language>en</dc:language>

</oai_dc:dc>
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XML structure: 3. XPath

/document/chapter [about (./heading, XML) AND
about(./section//*,syntax)]

chapter

XML Query
Language XQL

section

We describe
syntax of XQL

Introduction

[ Examples ][ Syntax ]
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XML structure: 3. XPath

/document/chapter [about (./heading, XML) AND
about(./section//*,syntax)]

chapter

XML Query
Language XQL

section

We describe
syntax of XQL

Introduction

[ Examples ][ Syntax ]
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XML structure: 3. XPath (cont'd)

o Full expressiveness for navigation through document tree
(+links)
e Parent/child, ancestor/descendant
o Following/preceding, following-sibling, preceding-sibling
o Attribute, namespace
@ Selection of arbitrary elements/subtrees
(but anser can be only a single element of the originating
document)
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XML structure: 4. XQuery

Higher expressiveness, especially for database-like applications:
e Joins (trees — graphs)
o Aggregations

@ Constructors for restructuring results
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XML structure: 4. XQuery

Higher expressiveness, especially for database-like applications:
e Joins (trees — graphs)
o Aggregations
@ Constructors for restructuring results

Example: List each publisher and the average price of its books

FOR $p IN distinct(document("bib.xml")//publisher)
LET $a := avg(document("bib.xml")//book[publisher =
$pl/price)
RETURN

<publisher>

<name> $p/text() </name>

<avgprice> $a </avgprice>

</publisher>
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XML content typing

Content Typing

Object Typesl

Data Types

Text only

Structure
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XML content typing: 1. Text

<book>

<author>John Smith</author>

<title>XML Retrieval</title>

<chapter> <heading>Introduction</heading>
This text explains all about XML and IR.

</chapter>

<chapter>
<heading> XML Query Language XQL
</heading> Example query

<section> //chapter [about (.,
<heading>Examples</heading> I e T ]
</section> qnery guag

<section>
<heading>Syntax</heading>
Now we describe the XQL syntax.
</section>
</chapter>
</book>
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XML content typing: 2. Data Types

o Data type: domain + (vague) predicates
(see above)
@ Close relationship to XML Schema, but

e XMLS supports syntactic type checking only
e No support for vague predicates
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XML content typing: 3. Object Types
Based on Tagging / Named Entity Recognition

@ Object types: Persons, Locations. Dates, .....

Pablo Picasso (October 25, 1881 - April 8, 1973) was a
Spanish painter and sculptor..... In Paris, Picasso entertained
a distinguished coterie of friends in the Montmartre and
Montparnasse quarters, including André Breton, Guillaume
Apollinaire, and writer Gertrude Stein.

To which other artists did Picasso have close relationships?
Did he ever visit the USA?

@ Named entity recognition methods allow for automatic
markup of object types

@ Object types support increased precision
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XML content typing

Tag semantics modelled as hierarchies

Object type hierarchies Role hierarchies
Person
/ \ Creator
Scientist Artist / \

/ \ / Author Editor

Physicist Chemist Poet Actor Singer
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XML content typing
Tag semantics modelled in OWL

. i rdfs:range
rdfs.domal@ g ‘@‘

rdfs:subPropertyOf
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Further Concepts
4-valued (probabilistic) logics

Supported concepts
o conflicting knowledge

@ open + closed world assumptions

Applications

@ 4-valued probabilistic Datalog [Fuhr & Roelleke 98]

e POOL: Probabilistic Object-Oriented Logic [Lalmas et al. 02]
o POLAR: Retrieval with Annotations [Frommholz & Fuhr 06]
@ POLIS: Information summarization [Forst et al. 07]
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Inference

@ Probabilistic relational model supports integration of IR+DB
@ Probabilistic Datalog as powerful inference mechanism

@ Allows for formulating retrieval strategies as logical rules

V.

Vague predicates

@ Natural extension of IR methods to attribute values

@ Vague predicates can be learned from feedback data

@ Transition from propositional to predicate logic
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Conclusion

Inference

@ Probabilistic relational model supports integration of IR+DB
@ Probabilistic Datalog as powerful inference mechanism

@ Allows for formulating retrieval strategies as logical rules

Vague predicates

@ Natural extension of IR methods to attribute values

@ Vague predicates can be learned from feedback data

@ Transition from propositional to predicate logic

Expressive query language

@ Joins

@ Aggregations

@ (Re)structuring of results
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