

what is visualistion?

making data easier to understand using **direct** sensory experience

especially visual!

but can have aural, tactile 'visualisation'

direct sensory experience

N.B. sensory rather than linguisitic

sort of right/left brain stuff!

but ... may include text, numbers, etc.

visualising in text alignment - numbers

think purpose!

which is biggest?

532.56

179.3

256.317

15

73.948

1035

3.142

497.6256

visualising in text alignment - numbers

visually:

long number = big number

align decimal points or right align integers

627.865

1.005763

382.583

2502.56

432.935

2.0175

652.87

56.34

PROMISE Winter School 2012

visualising in text **TableLens**

like a'spreadsheet' ...

... but some rows squashed to one pixel high numbers become small histogram bars

inal, Switzerland

why visualisation?

for the data analyst scientist, statistician, probably you!

for the data consumer audience, client, reader, end-user

why visualisation?

understanding consumer rhetoric

focus on well understood, simple representations

why visualisation?

understanding
analyst
exploration

powerful, often novel visualisations, training possible

why visualisation? seeking the unknown avoiding the obvious wary of happenstance wary of happenstance to find new things that have not been previously considered

a brief history of visualisation

from 2500 BC to 2012

a brief history ...

static visualisation

- the first 2500 years

interactive visualisation

- the glorious '90s

and now?

- web and mass data
- visual analytics

10

static visualisation

from clay tablets to Tufte

Mesopotamian tablets

PROMISE Winter School 2012

static visualisation

from clay tablets to Tufte

Mesopotamian tablets

10th Century time line

static visualisation

from clay tablets to Tufte

Mesopotamian tablets 10th Century time line

1855 Paris-Lyon train timetable

static visualisation from clay tablets to Tufte Mesopotamian tablets 10th Century time line 1855 Paris-Lyon train timetable Excel etc. Trends in fruit sales

choosing representations

visualisation factors

- visual 'affordances'

what we can see

- objectives, goals and tasks

what we need to see

aesthetics

what we like to see

trade-off

visualisation factors

- visual affordances
- objectives, goals and tasks
- aesthetics

static representation \Rightarrow trade-off

interaction reduces trade-off

- stacking histogram, overview vs. detail, etc. etc.

kinds of interaction

highlighting and focus drill down and hyperlinks overview and context changing parameters changing representations temporal fusion

using clusters the scatter/gather browser take a collection of documents - group into fixed number of clusters - displays clusters to user user selects one or more clusters - system collects these together

scatter:

gather:

scatter:

system clusters this new collection

24

good use of 3D

still have occlusion ... but 'normal' in 3D

shadows help to disambiguate

but text labels difficult

cone trees → cam trees

horizontal layout makes labels readable small things matter!

PROMISE Winter School 2012

disect 2D space - treemaps

takes tree of items with some 'size'

e.g. file hierarchy, financial accounts
 alternatively divides space horizontally/vertically for each level, proportionate to total size

http://www.cs.umd.edu/hcil/treemap-history/

treemaps (2)

later variants improved the shape and appearance of maps

ROMISE Winter School 2012

treemaps (3)

plus algorithms for vast data sets, for thumbnail images, etc. etc.

distort space ...

tree branching factor b:

number of nodes at depth d = b^d

Euclidean 2D space:

- amount of space at radius $r = 2\pi r$
- not enough space!

non-Euclidean hyperbolic space:

- exponential space at radius r

hyperbolic browser

- lays out tree in hyperbolic space
- then uses 2D representation of hyperbolic space

multiple attributes

often data items have several attributes e.g. document:

- type (journal, conference, book)
- date of publication
- author(s)
- multiple keywords (perhaps in taxonomy)
- citation count
- popularity

traditional approach ... boolean queries

>new query

?type='journal' and keyword='visualisation'

=query processing complete - 2175 results list all (Y/N)

>N

>refine query

refine: type='journal' and keyword='visualisation'

+author='smith'

=query processing complete - 0 results

scatter plot for two attributes colour/shape codes for more adjust rest with sliders dots appear/disappear as slider values change dynamic filtering

Influence Explorer (i)

developed for engineering models like Starfield ... but sliders show histogram how many in category (like HiBrowse) ... and how many 'just miss'

red = full match
black = all but one attribute ___
greys = fewer matching attr's __

PROMISE Winter School 2012 Zinal, Switzerland

Influence Explorer (ii)

some versions highlight individual items in each histogram

similar technique has been used to match multiple taxonomic classifications

Information Scent

Starfield

shows what is currently selected

• explore using trial and error

HiBrowse and Influence Explorer show what would happen

Pirolli et al. call this Information Scent

 things in the interface that help you know what actions to take to find the information you want

very large datasets

too many points/lines to see

solutions ...

space-filling single-pixel per item

Keim's VisD

random selection

(see Geoff Ellis' thesis)

clustering

visualise groups not individuals

Zinal, Switzerland