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Outline 

• Overview of relevance evaluation 

• Crowdsourcing 

• Social utility 

• Databases & infrastructure 
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RELEVANCE EVALUATION 
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Relevance and IR 

• What is relevance? 
– Multidimensional 
– Dynamic 
– Complex but systematic and measurable 

• Frameworks 
• Types 

– System or algorithmic  
– Topical 
– Pertinence 
– Situational 
– Motivational 

• How to measure relevance? 
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IR evaluation 

• Relevance is hard to evaluate 

– Highly subjective 

– Expensive to measure 

• Two types of IR evaluation 

– Offline: ask users to explicitly evaluate a system 

– Online: see how users interact with a system 
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Traditional IR relevance evaluation 

• The Cranfield tests 

• TREC 

• Retrieval tasks and metrics 

• Approach 
– Design a new retrieval technique 

– Use a test collection 

– Run experiment 

– Collect data and analyze results 
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Offline evaluation problems 

• Expensive 

• Slow 

• Do users and judges agree on relevance? 

• Maintenance of collections and assessments 
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Online evaluation 

• Observable user behavior reflects relevance 

• Real users 

– Have a goal 

– They work to satisfy an information need 

• Measure performance on real users and queries 

• Challenge: how do we know when users are 
satisfied? 
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What is online data? 

• Links, queries and clicks 

• Mouse movement 

• User behavior 

– Queries and results: timestamp, IP address 

– Click on results: what order, dwell time 

– Query reformulations 

PROMISE Winter School 2013 



Experimentation 

• New ranking mechanism 

• Implement logging infrastructure 

• Implement re-ranking infrastructure 

• Recruit users 

• Collect data and analyze results 
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Comparisons 

• Similar to tasting experiment 

– Blind test: Coke or Pepsi? 

• Document level 

• Ranking level  

• Interleaving 
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Why we need data? 

• Relevance metrics 

• Machine learning 

– Feature engineering 

– Training sets 

• Data science 
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Other important stuff 

• User studies 
– Given a task, observe users 
– Very expensive, lab setting 

• Field studies 
– Observe users in-situ 

• Eye tracking 
– Heat maps 
– Scanning patterns 
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Part 1 - Conclusions 

• Evaluation is a key part of production systems 

• This is a continuous process 

• In learning, a common approach is to use: 
– Explicit judgments as ground truth 

– Click data as features 

• Everything counts 
– Online 

– Offline 

– User studies 
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You have a new idea 

• Novel IR technique 

• Don’t have access to click data 

• Can’t hire editors 

• How to test new ideas? 
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CROWDSOURCING 
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The rise of crowdsourcing in IR 

• Crowdsourcing is hot 
• Lots of interest in the research community 

– Articles showing good results 
– Journals special issues (IR, IEEE Internet Computing, etc.) 
– Workshops and tutorials (SIGIR’10, NACL’10, WSDM’11, 

WWW’11, SIGIR’11/12, VLDB’11, CHI, etc.) 
– HCOMP 
– CrowdConf 2011/2012 

• Large companies leveraging crowdsourcing 
• Big data 
• Start-ups 
• Venture capital investment 
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What is crowdsourcing? 

• Take a job traditionally 
performed by a known agent 
(often an employee)  

• Outsource it to an undefined, 
generally large group of people 
via an open call 

• New application of principles 
from open source movement 

• Example: Wikipedia 
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Human-based computation 

• Use humans as processors in a distributed system 

• Address problems that computers aren’t good 

• Games with a purpose 

• Examples 

– ESP game 

– Captcha 

– ReCaptcha 
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Human computation 

• Not a new idea 

• Computers before 
computers 

• You are a human 
computer 
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Some definitions 

• Human computation is a computation 
that is performed by a human  

• Human computation system is a system 
that organizes human efforts to carry 
out computation 

• Crowdsourcing is a tool that a human 
computation system can use to 
distribute tasks. 
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Mechanical Turk 

• Amazon Mechanical Turk (AMT, 
MTurk, www.mturk.com) 

• Crowdsourcing platform 

• On-demand workforce 

• “Artificial artificial intelligence”:  
get humans to do hard part 

• Named after faux automaton of 
18th C. 
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Why is this interesting? 

• Easy to prototype and test new experiments 

• Cheap and fast 

• No need to setup infrastructure 

• Introduce experimentation early in the cycle 

• In the context of IR, implement and 
experiment as you go 

• For new ideas, this is very helpful 
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Caveats and clarifications 

• Trust and reliability 

• Wisdom of the crowd re-visit 

• Adjust expectations 

• Crowdsourcing is another data point for your 
analysis 

• Complementary to other experiments 
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Why now? 

• The Web 

• Use humans as processors in a distributed 
system 

• Address problems that computers aren’t good 

• Scale 

• Reach 
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Motivating example: relevance judging 

• Relevance of search results is difficult to judge 

– Highly subjective 

– Expensive to measure 

• Professional editors commonly used 

• Potential benefits of crowdsourcing 

– Scalability (time and cost) 

– Diversity of judgments 
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Crowdsourcing and relevance evaluation 

• For relevance, it combines two main 
approaches 

– Explicit judgments 

– Automated metrics 

• Other features 

– Large scale 

– Inexpensive 

– Diversity 
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Development framework 

• Incremental approach 

• Measure, evaluate, and adjust as you go 

• Suitable for repeatable tasks 
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Asking questions 

• Ask the right questions 
• Part art, part science 
• Instructions are key 
• Workers may not be IR experts so don’t assume 

the same understanding in terms of terminology  
• Show examples 
• Hire a technical writer 

– Engineer writes the specification 
– Writer communicates 
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UX design 

• Time to apply all those usability concepts 

• Experiment should be self-contained.  

• Keep it short and simple. Brief and concise. 

• Be very clear with the relevance task.  

• Engage with the worker. Avoid boring stuff. 

• Document presentation & design 

• Need to grab attention 

• Always ask for feedback (open-ended question) in an 
input box. 

• Localization 
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Other design principles 
• Text alignment 

• Legibility 

• Reading level: complexity of words and sentences 

• Attractiveness (worker’s attention & enjoyment) 

• Multi-cultural / multi-lingual 

• Who is the audience (e.g. target worker community) 

– Special needs communities (e.g. simple color blindness) 

• Cognitive load: mental rigor needed to perform task 

• Exposure effect 
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When to assess quality of work 

• Beforehand (prior to main task activity) 
– How: “qualification tests” or similar mechanism 

– Purpose: screening, selection, recruiting, training 

• During 
– How: assess labels as worker produces them 

• Like random checks on a manufacturing line 

– Purpose: calibrate, reward/penalize, weight 

• After 
– How: compute accuracy metrics post-hoc 

– Purpose: filter, calibrate, weight, retain (HR) 
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How do we measure work quality? 

• Compare worker’s label vs. 

– Known (correct, trusted) label 

– Other workers’ labels 

– Model predictions of workers and labels 

• Verify worker’s label 

– Yourself 

– Tiered approach (e.g. Find-Fix-Verify) 
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Comparing to known answers 

• AKA: gold, honey pot, verifiable answer, trap  

• Assumes you have known answers 

• Cost vs. Benefit 

– Producing known answers (experts?) 

– % of work spent re-producing them 

• Finer points 

– What if workers recognize the honey pots? 
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Comparing to other workers 

• AKA: consensus, plurality, redundant labeling 

• Well-known metrics for measuring agreement 

• Cost vs. Benefit: % of work that is redundant 

• Finer points 

– Is consensus “truth” or systematic bias of group? 

– What if no one really knows what they’re doing? 

• Low-agreement across workers indicates problem is 
with the task (or a specific example), not the workers 
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Methods for measuring agreement 
• What to look for 

– Agreement, reliability, validity 

• Inter-agreement level 
– Agreement between judges 

– Agreement between judges and the gold set 

• Some statistics 
– Percentage agreement 

– Cohen’s kappa (2 raters) 

– Fleiss’ kappa (any number of raters) 

– Krippendorff’s alpha 

• With majority vote, what if 2 say relevant, 3 say not?  
– Use expert to break ties  

– Collect more judgments as needed to reduce uncertainty 
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k coefficient 

• Different interpretations of k 

• For practical purposes you need to be >= moderate 

• Results may vary   
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k Interpretation 

< 0   Poor agreement 

0.01 – 0.20  Slight agreement 

0.21 – 0.40  Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80  Substantial agreement 

0.81 – 1.00  Almost perfect agreement 



Detection theory 

• Sensitivity measures 

– High sensitivity: good ability to discriminate 

– Low sensitivity: poor ability 
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Stimulus 
Class 

“Yes” “No” 

S1 Hits Misses 

S2 False alarms Correct 
rejections 

Hit rate H = P(“yes”|S2) 
False alarm rate F = P(“yes”|S1) 



Part 2 - Conclusions 

• Crowdsourcing works 

• Fast turnaround, easy to experiment, few dollars 
to test 

• But you have to design the experiments carefully 

• Usability considerations 

• Worker quality 

• User feedback extremely useful  

• Lots of opportunities to improve current 
platforms 
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You have a new idea - II 

• New source 

• How to study relevance in a new domain? 
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SOCIAL UTILITY 
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• Are social features useful? 

• Can we measure the utility? 

Social features and utility 
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Social features and utility - II 

• Social annotations are part of search engines (Bing, Google) 
• Benefits 

– Discovery of socially vetted recommendations 
– Personalized search results 
– Connecting to the lives of their friends 
– Result diversity 
– Emotionally connecting with an otherwise static and impersonal search engine 

• Problem 
– Very little understanding whether these social features are useful or not  

• Some questions 
– Are such endorsements from dearest friends more relevant to the user than 

from acquaintances or coworkers? 
– Are expert opinions or those from friends who live in the vicinity of the 

restaurant more valuable? 
– Do annotations on irrelevant results amplify their negative perception? 

PROMISE Winter School 2013 



Social features and utility - III 

• Social relevance aspects 

– When does a social annotation become relevant? 

– Taxonomy 

– User study 

• Can we predict relevance of a social 
annotation? 

– Feature design and modeling 
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Aspects of social relevance 

• Social annotation as a tuple  t = {q, u, c, v} 
–  q = query,  u = content, c = social network connection, v = interest in the content 
– Interest (like, share, dislike) 
– t={maui hotels, Expedia hotel page, Tim, like} 

• Taxonomy of Social Relevance aspects  
– Cues that influence the perceived utility of social annotations 
– Query Aspects (QA) 

• Query Intent  
• Query Class 

– Social Connection Aspects (SA) 
• Circle 
• Affinity 
• Expertise 
• Geographical Distance 
• Interest Valence 

– Content Aspects (CA) 
• Graded relevance 
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Query Aspects 

Query Intent 

Navigational 

Non-
navigational 

Query Classes 

Commerce 

Health 

Movie 

Music 

Restaurant 

Social 
Connection 

Circle 

Co-Worker 

Family 

Friend 

Affinity 

Close 

Distant 

Expertise 

Expert 

Non-Expert 

Geo-distance 

Near 

Far 

Interest 
Valence 

Like 

Dislike 

Share 

Content 
Aspects 

Relevance 

Perfect 

Excellent 

Good 

Fair 

Bad 

Detrimental 

Taxonomy of social relevance 
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Social relevance  

QA 
labels 

CA 
labels 

Bing search logs 

Social 
annotation 
assessment 

Query-URL 
assessment 

Query 
classification 
assessment 

Query-URL sampling Social annotation sampling 

SA 
labels 

• User study 

• Approach 

– Query-URL sampling 

– Social annotation 
sampling 

– Annotation task 

• Scenario 

• Task definition 

• Guidelines 

• Agreement 

• 3 weeks spanning 3 
months 

• 2388 (HEAD) & 1375 
(TAIL) queries 
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Generating social annotations 

Original annotation = 
<Thumbnail + Title + 
Snippet + URL> 

Generator 

Bing 
search 
logs 

Simulated 
social network 

Scenario 
template 

PROMISE Winter School 2013 



What is the value of this social annotation? 
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• Simulated social network construction 
• Scenario template generation 
• Disagreements resolution 
• Why simulating a network and potential issues 



Social utility 

 

• R(T) - utility of 
social annotations 

• Average utility of 
each tuple  

• Two variants of R(T) 

– Graded relevance 
utility  

– Binary utility 
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Social utility results 

• No significant difference for HEAD/TAIL queries 
• Overall, social annotation is useful 
• Social aspects (SA) have significant differentiating influence  
• The social affinity (SA-AFF) shows the most influence 

followed by expertise (SA-EXP) and connection circle (SA-
CIR),  
– colleagues and friends have equal utility but family members 

have much higher expected utility  

• For interest valence (SA-INT) 
– knowing that a connection has liked (lik) a link shows more 

utility than average 
– a share (shr) shows a negative utility influence 
– disliking a link (dis) has little effect on utility 
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Social utility results - II 

• What is the value of a set of aspects if we know another set 
of aspects? 
– {family} (circle) | {health} (query class)  
– Expected gain of knowing family given that we know health 

• Aspect Interplay: 
– SA-affinity is more important than SA-circle 
– QA-CLS=movie knowing SA-circle=family -> increases but if 
SA-circle=work colleague -> decreases 

– If affinity is close there is no value in knowing that the circle is a friend 
– If affinity is distant there is value in knowing that circle is work colleague 
– Expertise mostly required for health queries 

– QA-CLS=health knowing SA-expertise=expert 
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Feedback analysis 

• Inspection of a random sample of comments 
• no-util: expertise, affinity, interest valence  

– “Because he is a distant friend, neutral and non-expert, his 
opinion is not going to be useful to me” 

• some-util: circle, dislike  
– “Chris’ dislike might get me to click another link, even 

though it’s what I’m looking for, it could be a bad quality 
link” 

• sig-util: expertise, affinity 
– “She is only a colleague, but she is an expert on the result 

and her opinion matters to me because she knows what 
she is talking about” 
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Predicting social relevance 

• Can we predict automatically whether a social 
annotation adds utility to a search result? 

• Learning 

– Offline features from the user study 

– Online features available in the search engine 
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Feature engineering and modeling 

• Offline (16) 
– Query class aspects, circle, affinity, expertise, geo-distance, interest-

valence, CA 

• Online features (150+) 
– Query class  (e.g., is-commerce, is-health, etc.) 
– Session metrics (e.g., session duration, page view count, etc.) 
– User metrics (e.g., click count, page view count, etc.) 
– Query metrics (e.g., dwell time, time to 1st click, etc.) 
– Result metrics (e.g. abandonment) 

• Model 
– Predict utility using a classification model 
– We use MS internal implementation of MART 
– Model parameters details in paper 

• Experimental setup 
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Prediction is possible  

Online features 

HEAD  

precision +10% (20% recall) 

 

TAIL  

precision +15% (25% recall) 

Offline features 

HEAD  

precision +25% (50% recall) 

precision +13% (88% recall) 

TAIL 

precision +29% (50% recall) 

precision +7% (87% recall) 
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Prediction experiments results 

• Analyzed the logs in MART 
• For HEAD 

– Social aspects rank higher 
– Circle, affinity and expertise 

are the most important 
features 

• For TAIL 
– Content aspects rank higher 

• Online features are 
predictive but not as 
predictive as offline features 

• We can increase the 
performance of online 
features by adding SA and 
CA 
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Part 3 - Conclusions  

• Social features are rapidly evolving in search 
• Multiple aspects interact to determine relevance of a 

social annotation on the SERP 
• Utility of social features was not well understood 
• This work sheds light on this utility for social 

annotations 
– Aspect taxonomy 
– Utility of each aspect 
– The interplay between aspects 

• Social annotation relevance can be predicted to some 
extent 
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DATABASES & INFRASTRUCTURE 
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Datasets 

• Millions of queries per day 

• Ability to sample and quickly experiment is 
key 

• Data analysis on queries and labels 

• Automatic reporting 

• Continuous evaluation 
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Human computation pipelines 

• Or when to mix machines & people 

• Lots of experiments needs human labels 

• The human in the loop pattern 

• Classifiers 
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Facets for exploratory data analysis 

• Production systems contain lots of parameters 

• Query sets contain lots of attributes 

• Use facets to explore results data sets 
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PivotViewer 
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Demo 

• Get a query sample 
• Using the BingAPI, extract the top 10 

– Plain UX (no brand)  

• Split the SERP into 2 lists: top5, top6-10 
• Run A-B comparison task 

– Show top5 vs top6-10 
– Which one is better? A, B or the same? 
– Crowdsourcing, 3 workers, a few honey pots 

• Facets 
– Query, rank, query length, type, entity, etc. 

• Mechanical Turk meets PivotViewer 
 

PROMISE Winter School 2013 



The task 
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Inter-rater agreement 

• R packages psy and irr 

• Example 
> demo <- 

read.delim(file="C:/Omar/research/Promise-

2013/test_k.txt", head=TRUE, sep="\t") 

> kappam.fleiss(demo) 

 Fleiss' Kappa for m Raters 

 

 Subjects = 53  

   Raters = 3  

    Kappa = 0.508  
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Tutorial summary 

• The importance to understand relevance 

• Offline and online evaluation 

• Crowdsourcing as a cheap mechanism to 
gather labels 

• Relevance criteria 

• User studies and taxonomies 

• Exploratory data analysis 
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