
Introduction to Databases

PROMISE Winter School 2013
Bridging between Information Retrieval and Databases

Bressanone, Italy, 4–8 February 2013

Maurizio Lenzerini

M. Lenzerini - Introduction to databases 2

Acknowledgments

This material is based on a set of slides prepared by
Prof. Phokion Kolaitis (University of California, Santa
Cruz, USA)

I thank Prof. Phokion Kolaitis for letting me use his
material

Fare clic per modificare stile Outline

1.  The notion of database

2.  The relational model of data

3.  The relational algebra

4.  SQL

5.  The relational calculus

6.  Datalog

7.  Conclusions

M. Lenzerini - Introduction to databases 3

Fare clic per modificare stile Outline

1.  The notion of database

2.  The relational model of data

3.  The relational algebra

4.  SQL

5.  The relational calculus

6.  Datalog

7.  Conclusions

M. Lenzerini - Introduction to databases 4

M. Lenzerini - Introduction to databases 5

The Notion of Database

Application 1

Application N

File 1

File N

Application 1

Application 1
Database

pre-database
situation
(60’s-70’s)

The term “database” may refer to any collection of data stored in
a computing system. Here, we use it with a specific meaning:
integrated repository of the set of all relevant data of an
organization.

post-database
situation

M. Lenzerini - Introduction to databases 6

Database

The Database Management System (DBMS) is the software
system responsible of managing the database. Data in the
database are accessible only through such system.

Three-layer Software Architecture

Application1

Applicationn

DBMS

.

.

.

Application Server

Clientn

.

.

.

Client1

Presentation layer Application layer Data layer

Fare clic per modificare stile Databases and Database Management Systems

–  A database is a collection of inter-related data organized in
particular ways, and managed by a DBMS.

–  A database management system (DBMS) is a set of
programs that allows one to carry out at least the following
tasks:
•  Create a (persistent) database.
•  Insert, delete, modify (update) data in a database.
•  Query a database “efficiently) (ask questions and extract

information from the database).
•  Ensuring “correctness” and “availability” in data management

– DBMS’s are different from File Systems
–  Example: “Find all customers whose address has 95060 as zip

code” is an easy task for a DBMS, but may require a new program
to be written in a file system.

M. Lenzerini - Introduction to databases 7

Key Characteristics of DBMS’s
Every DBMS must provide support for:

•  A Data Model: A mathematical abstraction for representing/
organizing data.

•  At least one high-level Data Language: Language for defining,
updating, manipulating, and retrieving data.

•  Mechanisms for specifying and checking Integrity Constraints:
 Rules ad restrictions that the data at hand must obey – e.g., different

people must have different SSNs.

•  Transaction management, concurrency control & recovery
mechanisms:

 Must not confuse simultaneous actions – e.g.,
 two deposits to the same account must each credit the account.

•  Access control:
 Limit access of certain data to certain users.
M. Lenzerini - Introduction to databases 8

Applications of Database Management Systems

•  Traditional applications:
–  Institutional records

•  Government, Corporate, Academic, …
•  Payroll, Personnel Records, …

–  Airline Reservation Systems
–  Banking Systems

•  Numerous new applications:
–  Scientific Databases
–  Electronic Health Records
–  Information Integration from Heterogeneous Sources
–  Databases are behind most of the things one does on the

web:
•  Google searches, Amazon purchases, eBay auctions, …

M. Lenzerini - Introduction to databases 9

Data Languages

A Data Language has two parts:

•  A Data Definition Language (DDL) has a syntax for describing
“database templates” in terms of the underlying data model.

•  A Data Manipulation Language (DML) supports the following
operations on data:
–  Insertion
–  Deletion
–  Update
–  Retrieval and extraction of data (query the data).

 The first three operations are fairly standard. However, there is
much variety on data retrieval and extraction (Query
Languages).

M. Lenzerini - Introduction to databases 10

Fare clic per modificare stile A Brief History of Data Models

•  Earlier Data Models (before 1970)
–  Hierarchical Data Model

•  Based on the mathematical notion of a tree.

–  Network Data Model
•  Based on the mathematical notion of a graph.

•  Relational Data Model – 1970
–  Based on the mathematical notion of a relation.

•  Entity-Relationship Model – 1976
–  Conceptual model; used mainly as a design tool.

•  Semi-structured Data Model and XML – late 1990s
–  Based on SGML and the mathematical notion of a tree (the

Hierarchical Model strikes back!).

•  Data Model of Graph-databases – 2000s
M. Lenzerini - Introduction to databases 11

Fare clic per modificare stile

12

Relational Databases: A Very Brief History
•  The history of relational databases is

the history of a scientific and
technological revolution.

•  The scientific revolution started in 1970
by Edgar (Ted) F. Codd at the IBM San
Jose Research Laboratory (now the
IBM Almaden Research Center)

•  Codd introduced the relational data
model and two database query
languages: relational algebra and
relational calculus.
–  “A relational model for data for large

shared data banks”, CACM, 1970.
–  “Relational completeness of data

base sublanguages”, in: Database
Systems, ed. by R. Rustin, 1972.

 Edgar F. Codd, 1923-2003

M. Lenzerini - Introduction to databases 12

Fare clic per modificare stile

13

Relational Databases: A Very Brief History
•  Researchers at the IBM San Jose Laboratory embark on the

System R project, the first implementation of a relational
database management system (RDBMS) – see the paper by
Astrahan et al.
–  In 1974-1975, they develop SEQUEL, a query language that eventually

became the industry standard SQL.
–  System R evolved to DB2 – released first in 1983.

•  M. Stonebraker and E. Wong embark on the development of
the Ingres RDBMS at UC Berkeley in 1973.
–  Ingres is commercialized in 1983; later, it became PostgreSQL, a free

software OODBMS (object-oriented DBMS).

•  L. Ellison founds a company in 1979 that eventually becomes
Oracle Corporation; Oracle V2 is released in 1979 and Oracle
V3 in 1983.

•  Ted Codd receives the ACM Turing Award in 1981.
•  Database research is still very active today
M. Lenzerini - Introduction to databases 13

Fare clic per modificare stile Outline

1.  The notion of database

2.  The relational model of data

3.  The relational algebra

4.  SQL

5.  The relational calculus

6.  Datalog

7.  Conclusions

M. Lenzerini - Introduction to databases 14

Fare clic per modificare stile

15

The Relational Data Model (E.F. Codd – 1970)

•  The Relational Data Model uses the mathematical concept of a
relation as the formalism for describing and representing data.

•  Question: What is a relation?
•  Answer:

–  Formally, a relation is a subset of a cartesian product of sets.
–  Informally, a relation is a “table” with rows and columns.

branch-name account-no customer-name balance

Orsay 10991-06284 Abiteboul $3,567.53

Hawthorne 10992-35671 Hull $11,245.75

… … … …

CHECKING-ACCOUNT Table

M. Lenzerini - Introduction to databases 15

Fare clic per modificare stile

16

Basic Notions from Discrete Mathematics
•  A k-tuple is an ordered sequence of k objects (need not be

distinct)
–  (2,0,1) is a 3-tuple; (a,b,a,a,c) is a 5-tuple, and so on.

•  If D1, D2, …, Dk are k sets, then the cartesian product D1 × D2
… × Dk of these sets is the set of all k-tuples (d1,d2, …,dk) such
that di ⊆ Di, for 1 ≤ i ≤ k.

•  Fact: Let |D| denote the cardinality (# of elements) of a set D.
Then |D1 × D2 × … × Dk| = |D1| × |D2| × …× |Dk|.

•  Example: If D1 = {0,1} and D2 ={a,b,c,d}, then |D1× D2| = 8.

•  Warning: In general, computing a cartesian product is an
expensive operation!

M. Lenzerini - Introduction to databases 16

Fare clic per modificare stile

17

Basic Notions from Discrete Mathematics

•  A k-ary relation R is a subset of a cartesian product of k sets,
i.e., R ⊆ D1 × D2 × … × Dk.

•  Examples:

–  Unary R = {0,2,4,…,100} (R ⊆ N)

–  Binary L = {(m,n): m < n} (L ⊆ N×N)

–  Binary T = {(a,b): a and b have the same birthday}

–  Ternary S = {(m,n,s): s = m+n}

–  …

M. Lenzerini - Introduction to databases 17

Fare clic per modificare stile

18

Relations and Attributes

R ⊆ D1 × D2 × … × Dk can be viewed as a table with k columns

Table R

M. Lenzerini - Introduction to databases 18

Definition: An attribute is the name of a position (column) of a
relation (table).

In the CHECKING-ACCOUNT Table below, the attributes are
branch-name, account-no, customer-name, and balance.

branch-name account-no customer-name balance
Orsay 10991-06284 Abiteboul $3,567.53

Hawthorne 10992-35671 Hull $11,245.75

… … … …

CHECKING-ACCOUNT Table

Fare clic per modificare stile

19

Relation Schemas and Relations
Definition: A k-ary relation schema R(A1,A2,…,AK) is a named
ordered sequence (A1,A2,…,Ak) of k attributes (where each
attribute may have a data type declared).

Examples:
–  COURSE(course-no, course-name, term, instructor, room, time)
–  CITY-INFO(name, state, population)
–  Option: course-no:integer, course-name:string
Thus, a k-ary relation schema is a “blueprint”, a “template” or a “structure
specification” for some k-ary relation.

Definition: An instance of a relation schema is a relation
conforming to the schema:

  The arities must match;
  If declared, the data types must match.

M. Lenzerini - Introduction to databases 19

Fare clic per modificare stile

20

Relational Database Schemas and Relational Databases

M. Lenzerini - Introduction to databases 20

Definition: A relational database schema is a set of relation
schemas Ri(A1,A2,…,Aki

), for 1 ≤ i ≤ m.

Example: BANKING relational database schema with relation
schemas
– CHECKING-ACCOUNT(branch, acc-no, cust-id, balance)
– SAVINGS-ACCOUNT(branch, acc-no, cust-id, balance)
– CUSTOMER(cust-id, name, address, phone, email)
– ….

Definition: A relational database instance or, simply, a relational
database of a relational schema is a set of relations Ri each of
which is an instance of the corresponding relation schema Ri, for
each 1 ≤ i ≤ m.

Fare clic per modificare stile

21

Relational Database Schemas - Examples

Examples:
•  BANKING relational database schema with relation schemas

–  CHECKING-ACCOUNT(branch, acc-no, cust-id, balance)
–  SAVINGS-ACCOUNT(branch, acc-no, cust-id, balance)
–  CUSTOMER(cust-id, name, address, phone, email)
–  ….

•  UNIVERSITY relational database schema with relation
schemas
–  STUDENT(student-id, student-name, major, status)
–  FACULTY(faculty-id, faculty-name, dpt, title, salary)
–  COURSE(course-no, course-name, term, instructor)
–  ENROLLS(student-id, course-no, term)
–  …

Note: In general, a relational schema may have infinitely many
different relational database instances.

M. Lenzerini - Introduction to databases 21

Fare clic per modificare stile

22

Schemas vs. Instances

 Keep in mind that there is a clear distinction between
–  relation schemas and instances of relation schemas
and
–  relational database schemas and relational database

instances.

Syntactic Notion Semantic Notion
(discrete mathematics notion)

Relation Schema Instance of a relation schema
(i.e., a relation)

Relational Database Schema Relational database instance
(i.e., a database)

M. Lenzerini - Introduction to databases 22

Fare clic per modificare stile

23

Query Languages for the Relational Data Model

Codd introduced two different query languages for the relational
data model:
•  Relational Algebra, which is a procedural language.

–  It is an algebraic formalism in which queries are expressed by applying a
sequence of operations to relations.

•  Relational Calculus, which is a declarative language.
–  It is a logical formalism in which queries are expressed as formulas of

first-order logic.

Codd’s Theorem: Relational Algebra and Relational Calculus are
essentially equivalent in terms of expressive power.

DBMSs are based on yet another language, namely SQL, a hybrid
of a procedural and a declarative language that combines features
from both relational algebra and relational calculus.

M. Lenzerini - Introduction to databases 23

Fare clic per modificare stile

24

Desiderata for a Database Query Language

Desiderata:
I.  The language should be sufficiently high-level to secure

physical data independence, i.e., the separation between the
physical level and the conceptual level of databases.

II.  The language should have high enough expressive power to
be able to pose useful and interesting queries against the
database.

III.  The language should be efficiently implementable to allow for
the fast retrieval of information from the database.

Warning:
  There is a well-understood tension between desideratum II

and desideratum III.
  Increase in expressive power comes at the expense of

efficiency.

M. Lenzerini - Introduction to databases 24

Fare clic per modificare stile Outline

1.  The notion of database

2.  The relational model of data

3.  The relational algebra

4.  SQL

5.  The relational calculus

6.  Datalog

7.  Conclusions

M. Lenzerini - Introduction to databases 25

Fare clic per modificare stile

26

The Five Basic Operations of Relational Algebra

Operators of Relational Algebra:
•  Group I: Three standard set-theoretic binary operations:

–  Union
–  Difference
–  Cartesian Product

•  Group II. Two special unary operations on relations:
–  Projection
–  Selection

•  Relational Algebra consists of all expressions obtained by
combining these five basic operations in syntactically correct
ways.

M. Lenzerini - Introduction to databases 26

Fare clic per modificare stile

27

Relational Algebra: Standard Set-Theoretic Operations
•  Union

–  Input: Two k-ary relations R and S, for some k.
– Output: The k-ary relation R ∪ S, where
 R ∪ S = {(a1,…,ak): (a1,…,ak) is in R or (a1,…,ak) is in S}

•  Difference:
–  Input: Two k-ary relations R and S, for some k.
– Output: The k-ary relation R - S, where
 R - S = {(a1,…,ak): (a1,…,ak) is in R and (a1,…,ak) is not in S}

•  Note:
–  In relational algebra, both arguments to the union and the

difference must be relations of the same arity.
–  In SQL, there is the additional requirement that the

corresponding attributes must have the same data type.
– However, the corresponding attributes need not have the

same names; the corresponding attribute in the result can be
renamed arbitrarily.

M. Lenzerini - Introduction to databases 27

Fare clic per modificare stile

Employee
Code

7432
9824

Age

54
45

Name

Neri
Verdi

7274 42 Rossi

Director
Code

7432
9824

9297
Age

54
45

33
Name

Neri
Verdi

Neri

Employee ∪ Director
Code Age Name

7432 54 Neri
9824 45 Verdi
9297 33 Neri

7274 42 Rossi
7432 54 Neri
9824 45 Verdi

7274 42 Rossi
7432 54 Neri
9824 45 Verdi
9297 33 Neri

7432 54 Neri
9824 45 Verdi
9297 33 Neri

7274 42 Rossi

Union

M. Lenzerini - Introduction to databases 28

Fare clic per modificare stile

Employee
Code Age Name

7432 54 Neri
9824 45 Verdi

7274 42 Rossi

Director
Code

7432
9824

9297
Age

54
45

33
Name

Neri
Verdi

Neri

Employee – Director
Code Age Name

7432 54 Neri
9824 45 Verdi

7274 42 Rossi
7432 54 Neri
9824 45 Verdi

7274 42 Rossi

Difference

M. Lenzerini - Introduction to databases 29

Fare clic per modificare stile

30

Relational Algebra: Cartesian Product

•  Cartesian Product
–  Input: An m-ary relation R and an n-ary relation S
– Output: The (m+n)-ary relation R × S, where

 R × S = {(a1,…,am,b1,…,bn): (a1,…am) is in R and (b1,…,bn) is in S}

•  Note:
 As stated earlier,

 |R × S| = |R| × |S|

M. Lenzerini - Introduction to databases 30

Rossi A
Neri B
Bianchi B

Emp Dept
Employee

A Mori
B Bruni B Bruni B Bruni

Code Chair
Dept

Employee × Dept
Emp Dept Chair Code
Rossi A Mori A A A
Rossi A B Bruni
Neri B Mori A
Neri B B Bruni
Bianchi B Mori A
Bianchi B B Bruni

Relational Algebra: Cartesian Product

M. Lenzerini - Introduction to databases 31

Fare clic per modificare stile

32

Algebraic Laws for the Basic Set-Theoretic Operation

•  Union:
–  R ∪ R = R -- idempotence law
–  R ∪ S = S ∪ R -- commutativity law, order is unimportant
–  R ∪ (S ∪ T) = (R ∪ S) ∪ T
 -- associativity law, can drop parentheses

•  Difference:
–  R – R = ∅
–  In general, R – S ≠ S – R
–  Associativity does not hold for the difference

•  Cartesian Product:
–  In general, R × S ≠ S × R
–  R × (S × T) = (R ×S) × T
–  R × (S ∪ T) = (R × S) ∪ (R × T) (distributivity law)

M. Lenzerini - Introduction to databases 32

Fare clic per modificare stile

33

Algebraic Laws

•  Question:
–  Why are algebraic laws important?

•  Answer:
–  Algebraic laws are important in query processing and

optimization to transform a query to an equivalent one that
may be less costly to evaluate

–  Applying correct algebraic laws ensures the correctness of
the transformations.

M. Lenzerini - Introduction to databases 33

Fare clic per modificare stile

34

The Projection Operation
•  Motivation: It is often the case that, given a table R, one wants

to rearrange the order of the columns and/or suppress some
columns

•  Projection is a family of unary operations of the form
π<attribute list> (<relation name>)

•  The intuitive description of the projection operation is as
follows:
–  When projection is applied to a relation R, it removes all

columns whose attributes do not appear in the <attribute
list>.

–  The remaining columns may be re-arranged according to the
order in the <attribute list>.

–  Any duplicate rows are also eliminated.
M. Lenzerini - Introduction to databases 34

Name Site Salary Code

Neri Milano 64 5998
Neri Napoli 55 7309

Rossi Roma 64 5698
Rossi Roma 44 9553

Show name and Site of employees

PROJ Name, Site(Employee)

Employee

The Projection Operation

M. Lenzerini - Introduction to databases 35

Fare clic per modificare stile

36

More on the Syntax of the Projection Operation

•  In relational algebra, attributes can be referenced by position
number

•  Projection Operation:
–  Syntax: πi1,…,im

(R), where R is of arity k, and i1,….,im are
 distinct integers from 1 up to k.
–  Semantics:
 πi1,…,im

(R) = {(a1,…,am): there is a tuple (b1,…,bk) in R such
 that a1=bi1

, …, am=bim
}

•  Example: If R is R(A,B,C,D), then πC,A (R) = π3,1(R)

π3,1(R) = {(a1,a2): there is (a,b,c,d) in R such that a1=c and
 a2=a}

M. Lenzerini - Introduction to databases 36

Fare clic per modificare stile

37

The Selection Operation
•  Motivation: Given SAVINGS(branch-name, acc-no, cust-

name, balance) we may want to extract the following
information from it:

•  Find all records in the Aptos branch
•  Find all records with balance at least $50,000
•  Find all records in the Aptos branch with balance less than $1,000

•  Selection is a family of unary operations of the form
σΘ(R)

 where R is a relation and Θ is a condition that can be
applied as a test to each row of R.

•  When a selection operation is applied to R, it returns
the subset of R consisting of all rows that satisfy the
condition Θ

•  Question: What is the precise definition of a “condition”?
M. Lenzerini - Introduction to databases 37

Fare clic per modificare stile

38

The Selection Operation

•  Definition: A condition in the selection operation is an
expression built up from:
–  Comparison operators =, <, >, ≠, ≤, ≥ applied to operands

that are constants or attribute names or component
numbers.

•  These are the basic (atomic) clauses of the conditions.

–  The Boolean logic operators ∧, ∨, : applied to basic clauses.

•  Examples:
–  balance > 10,000
–  branch-name = “Aptos”
–  (branch-name = “Aptos”) ⋀ (balance < 1,000)

M. Lenzerini - Introduction to databases 38

Fare clic per modificare stile

39

The Selection Operator

•  Note:
–  The use of the comparison operators <, >, ≤, ≥

assumes that the underlying domain of values is
totally ordered.

–  If the domain is not totally ordered, then only = and
≠ are allowed.

–  If we do not have attribute names (hence, we can
only reference columns via their component
number), then we need to have a special symbol,
say $, in front of a component number. Thus,
–  $4 > 100 is a meaningful basic clause
–  $1 = “Aptos” is a meaningful basic clause, and so on.

M. Lenzerini - Introduction to databases 39

Name Site Salary Code

Neri Milano 64 5998
Rossi Roma 55 7309

Neri Napoli 64 5698
Milano Milano 44 9553 Milano Milano 44 9553 Neri Napoli 64 5698

Show the employees whose salary is greater than 50

σSalary > 50 (Employee)

Employee

The Selection Operator

M. Lenzerini - Introduction to databases 40

Fare clic per modificare stile

41

Algebraic Laws for the Selection Operation

•  σΘ1 (σΘ2
(R)) = σΘ2 (σΘ1

(R))

•  σΘ1 (σΘ2
(R)) = σΘ1 ⋀ Θ2

(R)

•  σΘ
(R ⋀ S) = σΘ(R) ⋀ S

 provided Θ mentions only attributes of R.

Note: These are very useful laws in query optimization.

M. Lenzerini - Introduction to databases 41

Fare clic per modificare stile

42

Relational Algebra Expression

•  Definition: A relational algebra expression is a string
obtained from relation schemas using union,
difference, cartesian product, projection, and selection.

•  Context-free grammar for relational algebra expressions:

 E := R, S, … | (E1 ∪ E2) | (E1 – E2) | (E1× E2) | πX (E) | σΘ (E),
 where

  R, S, … are relation schemas
  X is a list of attributes
  Θ is a condition.

M. Lenzerini - Introduction to databases 42

Fare clic per modificare stile

43

Derived Operation: Intersection

•  Intersection
–  Input: Two k-ary relations R and S, for some k.
–  Output: The k-ary relation R ∩ S, where

 R ∩ S = {(a1,…,ak): (a1,…,ak) is in R and (a1,…,ak) is in S}

  Fact: R ∩ S = R – (R – S) = S – (S – R)

Thus, intersection is a derived relational algebra
operation.
M. Lenzerini - Introduction to databases 43

Fare clic per modificare stile

Employee
Code

7432
9824

Age

54
45

Name

Neri
Verdi

7274 42 Rossi

Director
Code

7432
9824

9297
Age

54
45

33
Name

Neri
Verdi

Neri

Employee ∩ Director

Code Age Name
7432 54 Neri
9824 45 Verdi

7432 54 Neri
9824 45 Verdi

7432 54 Neri
9824 45 Verdi

7432 54 Neri
9824 45 Verdi

Intersection: example

M. Lenzerini - Introduction to databases 44

Fare clic per modificare stile

45

Derived Operation: Θ-Join and Beyond

Definition: A Θ-Join is a relational algebra expression of the form
 σΘ(R × S)

Note:
  If R and S have an attribute A in common, then we use the

notation R.A and S.A to disambiguate.

  The Θ-Join selects those tuples from R × S that satisfy the
condition Θ. In particular, if every tuple in R Θ S satisfies Θ,
then

σΘ(R × S) = R × S

M. Lenzerini - Introduction to databases 45

Fare clic per modificare stile

46

Θ-Join and Beyond

•  Θ-joins are often combined with projection to express
interesting queries.

•  Example: F(name, dpt, salary), C(dpt, name), where F
stands for FACULTY and C stands for CHAIR
– Find the salaries of department chairs
 C-SALARY(dpt,salary) =

 π F.dpt, F.Salary(σF.name = C.name ⋀ F.dpt = C.dpt (F × C))

Note: The Θ-Join in this example is an equijoin, since Θ is a
conjunction of equality basic clauses.
Exercise: Show that the intersection R ∩ S can be expressed
using a combination of projection and an equijoin.
M. Lenzerini - Introduction to databases 46

Fare clic per modificare stile

47

Θ-Join and Beyond

Example: F(name, dpt, salary), C-SALARY(dpt, salary)
Find the names of all faculty members of the EE department who
earn a bigger salary than their department chair.

HIGHLY-PAID-IN-EE(Name) =

π F.name (σ F.dpt = “EE” ⋀ F.dpt = C.dpt ⋀ F.salary > C.salary (F × C-SALARY))

Note: The Θ-Join above is not an equijoin.

M. Lenzerini - Introduction to databases 47

Fare clic per modificare stile

48

Derived Operation: Natural Join
The natural join between two relations is essentially the equi-join
on common attributes.

Given TEACHES(facname,course, term) and
ENROLLS(studname, course, term), we compute the natural join
TAUGHT-BY(studname,course,term,facname) by:

π E.studname, E.course, E.term. ,E.course, T.facname
 (σ T.course = E.course ⋀ T.term = E.term (ENROLLS × TEACHES))

The resulting expression can be written using this notation:
ENROLLS ⋈ TEACHES

M. Lenzerini - Introduction to databases 48

Fare clic per modificare stile

49

Natural Join

•  Definition: Let A1, …, Ak be the common attributes of two
relation schemas R and S. Then

 R ⋈ S = π<list> (σR.A1=S.A1 ⋀ … ⋀ R.A1=S.Ak(R×S)),
 where <list> contains all attributes of R×S, except for S.A1, …,

S.Ak (in other words, duplicate columns are eliminated).

  Algorithm for R ⋈ S:
For every tuple in R, compare it with every tuple in S as follows:
  test if they agree on all common attributes of R and S;
  if they do, take the tuple in R × S formed by these two tuples,
  remove all values of attributes of S that also occur in R;
  put the resulting tuple in R ⋈ S.

M. Lenzerini - Introduction to databases 49

Fare clic per modificare stile

50

Natural Join

Some Algebraic Laws for Natural Join
–  R ⋈ S = S ⋈ R (up to rearranging the columns)
–  (R ⋈ S) ⋈ T = R ⋈ (S ⋈ T)
–  (R ⋈ R) = R
–  If A is an attribute of R, but not of S, then

	
σA = c (R ⋈ S) = σA = c (R) ⋈ S
–  …

Fact: The most FAQs against databases involve the natural join
operation ⋈.

M. Lenzerini - Introduction to databases 50

Fare clic per modificare stile

51

Derived Operation: Quotient (Division)

•  Motivating Example:
Given ENROLLS(stud-name,course) and TEACHES(fac-name,course),
find the names of students who take every course taught by V.
Vianu.

•  Other Motivating Examples:
–  Find the names of customers who have an account in every branch of

Wachovia in San Jose.
–  Find the names of Netflix customers who have rented every film in which

Paul Newman starred.

•  These and other similar queries can be answered using the
 Quotient (Division) operation.

M. Lenzerini - Introduction to databases 51

Fare clic per modificare stile

52

Quotient (Division)

•  Definition: Let R be a relation of arity r and let S be a relation of
arity s, where r > s.

 The quotient (or division) R ÷ S is the relation of arity r – s
consisting of all tuples (a1,…,ar-s) such that for every tuple (b1,
…,bs) in S, we have that (a1,…,ar-s, b1,…,bs) is in R.

  Example: Given
 ENROLLS(studname,course) and TEACHES(facname,course),

find the names of students who take every course taught by V.
Vianu.
  Find the courses taught by V. Vianu
 πcourse (σ facname = “V. Vianu” (TEACHES))
  The desired answer is given by the expression:

 ENROLLS ÷ πcourse (σ facname = “V. Vianu” (TEACHES))

M. Lenzerini - Introduction to databases 52

Fare clic per modificare stile

53

Quotient (Division)

Fact: The quotient operation is expressible in relational algebra.

Proof: For concreteness, assume that R has arity 5 and S has
arity 2.

Key Idea: to compute R÷S, use the difference operation

  R÷S = π1,2,3(R) – “tuples in π1,2,3(R) that do not make it to
R÷S”

  What is the set of all tuples that fail the test for membership in
R÷S? It is the projection on 1,2,3 on the set denoted by the
relational algebra expression (π1,2,3(R)×S) – R.

 Hence,
R÷S = π1,2,3(R) – π1,2,3(π1,2,3(R)×S) – R).

M. Lenzerini - Introduction to databases 53

Fare clic per modificare stile

54

•  Definition (Codd – 1972): A database query language L is
relationally complete if it is at least as expressive as relational
algebra, i.e., every relational algebra expression E has an
equivalent expression F in L.

•  Relational completeness provides a benchmark for the
expressive power of a database query language.

•  Every commercial database query language should be at least
as expressive as relational algebra.

Relational Completeness

54
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

55

•  Question: Are all five basic relational algebra operations really
needed? Can one of them be expressed in terms of the other
four?

•  Theorem: Each of the five basic relational algebra operations is
independent of the other four, that is, it cannot be expressed by
a relational algebra expression that involves only the other four.

 Proof Idea: For each relational algebra operation, we need to
discover a property that is possessed by that operation, but is
not possessed by any relational algebra expression that
involves only the other four operations.

Independence of the Basic Relational Algebra Operations

M. Lenzerini - Introduction to databases

Fare clic per modificare stile

56

Computational Complexity of the Relational Algebra

•  What is the computational complexity of the relational algebra?

•  Definition (informal): A decision problem Q consists of a set of
inputs and a question with a “yes” or “no” answer for each input.

•  Definition:
–  Σ* is the set of all strings over a finite alphabet Σ.
–  A language over Σ is a set L ⊆ Σ*
–  Every language L gives rise to the following decision problem:

•  Given x ∊ Σ*, is x ∊ L?
–  Conversely, every decision problem can be thought of as arising from a

language, namely, the language consisting of all inputs with a “yes”
answer.

Q?
input x 1 (“yes”)

 0 (“no”)

M. Lenzerini - Introduction to databases

Fare clic per modificare stile

57

The Five Basic Computational Complexity Classes

•  LOGSPACE (or, L): All decision problems solvable by a TM using
extra memory bounded by a logarithmic amount in the input size.

•  NLOGSPACE (or, NL): All decision problems solvable by a NTM
using extra memory bounded by a logarithmic amount in the input
size.

•  P (or, PTIME): All decision problems solvable by a TM in time
bounded by some polynomial in the input size.

•  NP: All decision problems solvable by a NTM in time bounded by
some polynomial in the input size (deterministic time will be
exponential).

•  PSPACE: All decision problems solvable by a TM using memory
bounded by a polynomial in the input size (time will be exponential)

M. Lenzerini - Introduction to databases

Fare clic per modificare stile

58

The Five Basic Computational Complexity Classes

Theorem:
  The following inclusions hold:
 LOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP ⊆ PSPACE.

  Moreover, it is known that LOGSPACE ⊂ PSPACE.

  No other proper inclusion between these classes is known at
present. In particular, it is not known whether P = NP.

Note:
  The question: “is P = NP?” is the central open problem in

computational complexity.
  It is one of the Millennium Prize Problems – see

http://www.claymath.org/millennium/

M. Lenzerini - Introduction to databases

59

Complexity of the Query Evaluation Problem
•  The Query Evaluation Problem: Given a query q and a database I,

find the answers q(I) to q wrt I. (As a decision problem: Given a
query q, a database I, and a tuple t, decide whether t is in the
answers q(I)).

•  “Obvious” algorithm for evaluating a relational algebra expression
E over a database I:
–  For each relational algebra operator, write a procedure for computing the

result of an expression with only one application of such operator. Note
that the time complexity of each procedure is at most quadratic wrt the
size |I| of the database I

–  Evaluate the expression by calling the appropriate procedure. The time
complexity is O(|I||E|), where |I| is the size of I and |E| is the size of the
expression E.

•  Theorem: The Query Evaluation Problem for Relational Algebra is
PSPACE-complete.

M. Lenzerini - Introduction to databases 59

Fare clic per modificare stile

60

The Query Evaluation Problem for Relational Algebra

•  Paradox:
– The Query Evaluation Problem for Relational Algebra has

very high combined complexity (PSPACE-complete, so
“harder” than NP-complete).

– Yet, database systems evaluate SQL queries “efficiently”.

M. Lenzerini - Introduction to databases

61

Vardi’s Taxonomy of the Query Evaluation Problem

Let L be a database query language

–  The most general complexity measure consider the input to the
problem to be both the query Q and the database I – combined
complexity

–  When we want to measure the complexity of L wrt to the size of
the database I only, we consider the input of the problem to be
only I, with the query Q fixed, and we measure the complexity
of evaluating Q over I – data complexity

–  When we want to measure the complexity of L wrt to the size of
the query Q only, we consider the input of the problem to be
only Q, with the database I fixed, and we measure the
complexity of evaluating Q over I – query complexity

Fare clic per modificare stile

62

The Query Evaluation Problem for Relational Algebra

•  Paradox:
–  The Query Evaluation Problem for Relational Algebra has very high

combined complexity (PSPACE-complete, so “harder” than NP-complete).
–  Yet, database systems evaluate SQL queries “efficiently”.

•  Resolution of the Paradox:
– As we said, the combined complexity of the query evaluation

problem for relational algebra is O(|I||E|), and this tells that the
source of exponentiality is the size of the query.

–  In practice, we deal with the data complexity of the query
evaluation problem, because we typically have a small fixed
collection of queries to answer (while of course the database
instances vary and is much larger than the queries).

– The data complexity of the query evaluation problem for
Relational Algebra is in PTIME (actually, in LOGSPACE); so,
in principle, it is a tractable problem.

M. Lenzerini - Introduction to databases

Fare clic per modificare stile Outline

1.  The notion of database

2.  The relational model of data

3.  The relational algebra

4.  SQL

5.  The relational calculus

6.  Datalog

7.  Conclusions

M. Lenzerini - Introduction to databases 63

Fare clic per modificare stile

64

•  SQL is the standard language for relational DBMSs

•  We will present the syntax of the core SQL constructs and then
will give rigorous semantics by interpreting SQL to Relational
Algebra.

•  Note: SQL typically uses multiset semantics, but we ignore this
property here, and we only consider the set-based semantics
(adopted by using the keyword DISTINCT in queries)

SQL: Structured Query Language

M. Lenzerini - Introduction to databases

Fare clic per modificare stile

65

•  The basic SQL construct is:
SELECT DISTINCT <attribute list>
FROM <relation list>
WHERE <condition>

  More formally,
 SELECT DISTINCT Ri1.A1, … , Rim.Am
 FROM R1, … ,RK
 WHERE γ	

 Restrictions:
  R1, … ,RK are relation names (possibly, with aliases for renaming, where

an alias S for relation name Ri is denoted by Ri AS N)
  Each Rij.Aj is an attribute of Rij
  γ is a condition with a precise (and rather complex) syntax.

SQL: Structured Query Language

M. Lenzerini - Introduction to databases

Fare clic per modificare stile

66

SQL Relational Algebra

SELECT Projection

FROM Cartesian Product

WHERE Selection

Semantics of SQL via interpretation to Relational Algebra:

SELECT DISTINCT Ri1.A1, …, Rim.Am
FROM R1, …,RK
WHERE γ	

corresponds to

π Ri1.A1, … , Rim.Am (σγ (R1 × … × RK))

SQL vs. Relational Algebra

66
M. Lenzerini - Introduction to databases

Fare clic per modificare stile Outline

1.  The notion of database

2.  The relational model of data

3.  The relational algebra

4.  SQL

5.  The relational calculus

6.  Datalog

7.  Conclusions

M. Lenzerini - Introduction to databases 67

Fare clic per modificare stile

68

Relational Calculus

•  In addition to relational algebra, Codd introduced relational
calculus.

•  Relational calculus is a declarative database query language
based on first-order logic.

•  Codd’s main technical result is that relational algebra and
relational calculus have essentially the same expressive power.

68
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

69

Logic and Databases

•  There is a strong connection between logic and relational
databases

•  In its simpler form, the connection establishes that there is a
parallel between

69
M. Lenzerini - Introduction to databases

Logic Databases
Interpretation over a signature Database over a database schema

Closed formula Boolean Query

Evaluation (in terms of truth-value) of
a closed formula in an interpretation

Boolean Query evaluation over the
database

Formula with free variables Non-boolean Query

Evaluation (in terms of an n-ary
relation) of a formula with n free
variables in an interpretation

Evaluation (in terms of an n-ary
relation) of a n-ary query over a
database

Fare clic per modificare stile

70

Relational Calculus (First-Order Logic for Databases)

•  First-order variables: x, y, z, …, x1, …,xk,…
–  They range over values that may occur in tables.

•  Relation symbols: R, S, T, … of specified arities (names of
relations)

•  Atomic (Basic) Formulas:
–  R(x1,…,xk), where R is a k-ary relation symbol
 (alternatively, (x1,…,xk) ∈ R; the variables need not be distinct)
–  (x op y), where op is one of =, ≠, <, >, ≤, ≥
–  (x op c), where c is a constant and op is one of =, ≠, <, >, ≤, ≥.

•  Relational Calculus Formulas:
–  Every atomic formula is a relational calculus formula.
–  If ϕ and ψ are relational calculus formulas, then so are:

•  (ϕ ⋀ ψ), (ϕ ⋁ ψ), ¬ ψ, (ϕ ψ) (propositional connectives)
•  (∃x ϕ) (existential quantification)
•  (∀x ϕ) (universal quantification).

70
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

71

Relational Calculus Expression
Definition:
•  A relational calculus expression is an expression of the form
 { (x1,…,xk): ϕ(x1,…xk) },
 where ϕ(x1,…,xk) is a relational calculus formula with x1,…,xk as

its free variables.
•  When applied to a relational database I, this relational calculus

expression returns the k-ary relation that consists of all k-tuples
(a1,…,ak) that make the formula “true” on I.

•  Thus, every relational calculus expression as above defines a
k-ary query.

Example: The relational calculus expression
 { (x,y): ∃z (E(x,z) ⋀ E(z,y) }
returns the set P of all pairs of nodes (a,b) that are connected via
a path of length 2 (ONE-STOP query, if E stands for FLIGHTS).

71
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

72

Algebra Operators in Relational Calculus

Let R(A,B) and S(C,D) be two relational schema

  R ∪ S can be expressed by { (x,y): R(x,y) ⋁ S(x,y) }

  R – S can be expressed by { (x,y): R(x,y) ⋀ ¬S(x,y) }

  R × S can be expressed by { (x,y,w,z): R(x,y) ⋀ S(w,z) }

  πA(R) can be expressed by { (x): ∃y R(x,y) }

  σΘ(R) can be expressed by { (x,y): R(x,y) ⋀ Θ }

72
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

73

Relational Calculus – example

Abbreviation:
  ∃x1,…,xk stands for ∃x1,…,∃xk

  ∀x1,…,xk stands for ∀x1,…,∀xk

Example: Given relation FACULTY(name, dpt, salary), find the
names of the highest paid faculty in the CS department

 { (x): ∃y,z (FACULTY(x,y,z) ⋀ y = “CS” ⋀
 (∀u,v,w(FACULTY(u,v,w) ⋀ v = “CS” z ≥ w))) }

Exercise: Express this query in relational algebra and in SQL.

73
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

74

Natural Join in Relational Calculus

Example: Let R(A,B,C) and S(B,C,D) be two ternary relation
schemas.

  Recall that, in relational algebra, the natural join R ⋈ S is given
by

 π R.A,R.B,R.C,S.D (σ R.B = S.B ⋀ R.C = S.C (R × S))

  Here is a relational calculus expression for R ⋈ S:
 { (x1,x2,x3,x4): R(x1,x2,x3) ⋀ S(x2,x3,x4) }

Note: The natural join is expressible by a quantifier-free formula of
relational calculus.

74
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

75

Quotient in Relational Calculus

•  Recall that the quotient (or division) R ÷ S of two relations R
and S is the relation of arity r – s consisting of all tuples (a1,
…,ar-s) such that for every tuple (b1,…,bs) in S, we have that (a1,
…,ar-s, b1,…,bs) is in R.

•  Assume that R has arity 5 and S has arity 2. Here is R ÷ S in
relational calculus (3-ary query):

 { (x1,x2,x3): (∀x4)(∀x5) (S(x4,x5) R(x1,x2,x3,x4,x5)) }

  Much simpler than the relational algebra expression for R ÷ S

75
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

76

Relational Calculus and SQL

•  Relational calculus has influenced the design of SQL.

•  In particular, existential and universal quantification
may occur in the allowable conditions in the WHERE
clause of the SELECT … FROM … WHERE construct.

•  In addition, sets (or, multisets) are allowed as
operands in the WHERE clause

76
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

77

Sets as Operands in SQL
•  Sets are allowed as operands in the WHERE clause. Sets are

defined
–  by listing their elements, or
–  as the result of a SELECT … FROM … WHERE construct

nested inside the WHERE clause of an outer SELECT …
FROM .. WHERE

•  This is what makes SQL a “structured” language, i.e., we have
queries inside queries (subqueries) up to any finite depth of
nesting.

•  When sets are used as operands in a comparison clause:
–  We must use one of the keywords IN, NOT IN, SOME, ALL.
–  SOME and ALL must be preceded by one of the of comparison

operators =, ≠, ≥, ≤, >, <.
–  The use of SOME and ALL is the first form of existential and

universal quantification in SQL.
77

M. Lenzerini - Introduction to databases

Fare clic per modificare stile

78

Sets as Operands in SQL: IN and NOT IN

STUDENT(name, major, college)

•  Find all CS majors in Crown College or College Eight
 SELECT name
 FROM STUDENT
 WHERE major = ‘CS’ AND college IN (‘Crown’, ‘Eight’)

•  Find all CS majors in colleges other than Crown and Eight
 SELECT name
 FROM STUDENT
 WHERE major = ‘CS’ AND college NOT IN (‘Crown’, ‘Eight’)

M. Lenzerini - Introduction to databases

Fare clic per modificare stile

79

Sets as Operands in SQL: IN and NOT IN

Example: FACULTY(name,dpt,salary)
•  Find the names of faculty who are in a department in which at

least one member earns more than $175,000.
 SELECT F1.name
 FROM FACULTY AS F1
 WHERE F1.dpt IN (SELECT F2.dpt
 FROM FACULTY AS F2
 WHERE F2.salary > 175,000)

that can also be written (since names are implicitly qualified by the
table referenced in the FROM list at the same level of nesting):
 SELECT name
 FROM FACULTY
 WHERE dpt IN (SELECT dpt
 FROM FACULTY
 WHERE salary > 175,000)

Exercise: Express this query without using an SQL subquery.
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

80

Sets as Operands in SQL: IN and NOT IN

Example: FACULTY(name,dpt,salary)
•  Find the names of faculty who are in a department in which no
 member earns more than $175,000.

 SELECT name
 FROM FACULTY
 WHERE dpt NOT IN (SELECT dpt
 FROM FACULTY
 WHERE salary > 175,000)

Exercise: Express this query without using an SQL subquery.

80
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

81

Sets as Operands in SQL: IN and NOT IN

Example: FACULTY(name,dpt,salary), CHAIR(name,dpt)
•  Find the names of faculty who are in a department in which the

chair earns more than $200,000.

 SELECT name
 FROM FACULTY
 WHERE dpt IN (SELECT CHAIR.dpt
 FROM FACULTY, CHAIR
 WHERE FACULTY.name = CHAIR.name
 AND FACULTY.salary > 200,000)

Note: As we said before, attribute names are implicitly qualified by
the table referenced in the FROM list at the same level of nesting.
This can be overridden via aliasing.

81
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

82

SOME and ALL in SQL
•  Syntax: In the WHERE clause, we can have have

subclauses of the form
–  <attribute name> op SOME T
–  <attribute name> op ALL T, where

–  op is one of the comparison operators =, <>, ≥, ≤, >, <
–  T is the result of a nested SELECT … FROM … WHERE clause.

•  Semantics:
–  <attribute name> op SOME T means:
 (∃x)(x ∊ T ⋀ <attribute name> op x)
–  <attribute name> op ALL T means:
 (∀x)(x ∊ T <attribute name> op x).

•  Note:
–  <attribute name> = SOME T is the same as IN T
–  <attribute name> ≠ ALL T is the same as NOT IN T

82
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

83

SOME and ALL in SQL
Example: FACULTY(name,dpt,salary)
  Find the highest paid faculty in CS

 SELECT name
 FROM FACULTY
 WHERE dpt = “CS” AND salary ≥ ALL (SELECT salary
 FROM FACULTY
 WHERE dpt = “CS”).

Question: What is the result of the following SQL query?
 SELECT name

 FROM FACULTY
 WHERE dpt = “CS” AND salary > ALL (SELECT salary
 FROM FACULTY
 WHERE dpt = “CS”).

83
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

84

SOME and ALL in SQL
Example: FACULTY(name,dpt,salary)
  Find the highest paid faculty in CS

 SELECT name
 FROM FACULTY
 WHERE dpt = “CS” AND salary ≥ ALL (SELECT salary
 FROM FACULTY
 WHERE dpt = “CS”).

Question: What is the result of the following SQL query?
 SELECT name

 FROM FACULTY
 WHERE dpt = “CS” AND salary > ALL (SELECT salary
 FROM FACULTY
 WHERE dpt = “CS”).
Answer: The query returns the empty set.

84
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

85

SOME and ALL in SQL

Question: What are the results of the following two SQL queries?
  SELECT name
 FROM FACULTY
 WHERE dpt = “CS” AND salary > SOME (SELECT salary
 FROM FACULTY
 WHERE dpt = “CS”).
  SELECT name
 FROM FACULTY
 WHERE dpt = “CS” AND salary ≥ SOME (SELECT salary
 FROM FACULTY
 WHERE dpt = “CS”).
•  Answer:

–  The first returns all CS faculty who are not the lowest paid ones.
–  The second returns all CS faculty.

85
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

86

SOME and ALL in SQL

•  Find the names of the lowest paid faculty in the university
 SELECT name
 FROM FACULTY
 WHERE salary <= ALL (SELECT salary
 FROM FACULTY).
•  Find the names of all CS faculty who earn less than some

Philosophy faculty
 SELECT name
 FROM FACULTY
 WHERE dpt = ‘CS’ AND salary <
 SOME (SELECT salary
 FROM FACULTY
 WHERE dpt = ‘Philosophy’).

M. Lenzerini - Introduction to databases

Fare clic per modificare stile

87

EXISTS and NOT EXISTS in SQL
•  Syntax:

–  SELECT … FROM … WHERE EXISTS (SELECT … FROM … WHERE)

•  Semantics: The subquery (SELECT … FROM … WHERE) is
evaluated and the resulting set is tested for emptiness:
–  If it is non-empty, then the condition in WHERE evaluates to “true”;

otherwise, it evaluates to “false”.

•  Syntax:
–  SELECT … FROM … WHERE NOT EXISTS
 (SELECT … FROM … WHERE)

•  Semantics: The subquery (SELECT … FROM … WHERE) is
evaluated and the resulting set is tested for emptiness:
–  If it is empty, then the condition in WHERE evaluates to “true”; otherwise,

it evaluates to “false”.

87
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

88

EXISTS and NOT EXISTS in SQL

•  Example: FACULTY(name,dpt,salary)
 Find the faculty in the CS dpt who are not the lowest paid ones.
 SELECT R.name
 FROM FACULTY as R
 WHERE R.dpt = `CS’ AND
 EXISTS (SELECT *
 FROM FACULTY AS T
 WHERE T.dpt = `CS’ AND
 R.salary > T.salary)

Note: This is an example of a correlated subquery:
–  The subquery has to be evaluated separately for each tuple in the FROM

list of the outer query.
–  The tuple is kept or removed depending on the result of the EXISTS test.

88
M. Lenzerini - Introduction to databases

Fare clic per modificare stile

89

EXISTS and NOT EXISTS in SQL

ENROLS(student,course), TEACHES(instructor,course)
  Find all students who take a course taught by Mateas, but no

course taught by Mackey

SELECT R.student
FROM ENROLS AS R, TEACHES AS S
WHERE R.course = S.course AND S.instructor= ‘Mateas’ AND
 NOT EXISTS (SELECT *
 FROM ENROLS AS T, TEACHES AS W
 WHERE R.student = T.student AND
 T.course = W.course AND
 W.instructor = ‘Mackey’)

M. Lenzerini - Introduction to databases

Fare clic per modificare stile

90

EXISTS and NOT EXISTS in SQL
ENROLS(student,course), TEACHES(instructor,course)
•  Find the names of all students who are enrolled in every course

taught by Mackey.

SELECT R.student
FROM ENROLS AS R
WHERE there is no course taught by Mackey and not taken by R.student

SELECT R.student
FROM ENROLS AS R
WHERE NOT EXISTS (SELECT S.course
 FROM TEACHES AS S
 WHERE S.instructor = ‘Mackey’ AND
 S.course NOT IN (SELECT T.course

 FROM ENROLS AS T
 WHERE R.student = T.student))

M. Lenzerini - Introduction to databases

Fare clic per modificare stile Outline

1.  The notion of database

2.  The relational model of data

3.  The relational algebra

4.  SQL

5.  The relational calculus

6.  Datalog

7.  Conclusions

M. Lenzerini - Introduction to databases 91

Fare clic per modificare stile Limitations of Relational Algebra & Relational Calculus

M. Lenzerini - Introduction to databases 92

Outline:
•  Relational Algebra and Relational Calculus have substantial

expressive power. In particular, they can express
–  Natural Join
–  µ-join, for various conditions µ
–  Quotient
–  …

•  However, they cannot express recursive queries.

•  Datalog is a declarative database query language that
augments relational algebra/calculus with a recursion
mechanism.
–  Datalog = “Conjunctive Queries + Recursion”

Fare clic per modificare stile Conjunctive Queries

M. Lenzerini - Introduction to databases 93

•  Definition: A conjunctive query is a query expressible by a
relational calculus formula built from atomic formulas, ⋀, and ∃
only, i.e., it is an expression of the form

 {(x1,…,xk): ∃z1 …∃zm χ(x1, …,xk, z1,…,zk)},
 where χ(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas,
each of the form R(y1,…,ym).

  A conjunctive query can be written as a logic-programming rule
Q(x1,…,xk) :- R1(u1), …, Rn(un)

where
  Each variable xi occurs in the right-hand side of the rule.
  Each ui is a tuple of variables (not necessarily distinct)
  The variables occurring in the right-hand side (the body), but

not in the left-hand side (the head) of the rule are
existentially quantified (but the quantifiers are not displayed).

  “,” stands for conjunction.

Fare clic per modificare stile Conjunctive Queries

M. Lenzerini - Introduction to databases 94

More Examples:
– Path of Length 2: (Binary query)

{ (x,y): ∃z (E(x,z) ⋀ E(z,y)) }

•  As a relational algebra expression,
π1,4 (σ$2=$3(E × E)

•  As a rule:
q(x,y) :- E(x,z), E(z,y)

– Node on a Cycle of Length 3: (Unary query)
{x: ∃y∃z (E(x,y) ⋀ E(y,z) ⋀ E(z,x))

•  As a rule:
Q(x) :- E(x,z), E(z,y), E(z,x)

Fare clic per modificare stile Parents, Grandparents, and Greatgrandparents

M. Lenzerini - Introduction to databases 95

•  Let PARENT be a binary relational schema such that if
 (a,b) ∊ PARENT in some database instance, then a is a parent

of b.

•  Using PARENT, we can define GRANDPARENT and
GREATGRANPARENT as follows:

GRANDPARENT(x,y) :- PARENT(x,z), PARENT(z,y)
GREATGRANDPARENT(x,y) :- PARENT(x,z), PARENT(z,w),
 PARENT(w,y)

•  Similarly, we can define GREATGREATGRANPARENT using a
conjunctive query, and so on up to any fixed level of ancestry.

Fare clic per modificare stile Parents and Ancestors

M. Lenzerini - Introduction to databases 96

•  Question: Is there a relational algebra (relational calculus)
expression that defines ANCESTOR from PARENT?

•  Note: This type of question occurs in other related concepts:
–  Given a binary relation MANAGES(manager, employee), is

there a relational algebra (relational calculus) expression
that defines HIGHER-MANAGER

–  Given a binary relation DIRECT(from,to) about flights, is
there a relational algebra (relational calculus) expression
that defines CAN-FLY(from,to)?

–  More abstractly, given a binary relation E, is there a
relational algebra (relational calculus) expression that
defines the Transitive Closure TC of E?

Fare clic per modificare stile Edges and Paths

M. Lenzerini - Introduction to databases 97

Definition: Let E be a binary relation
•  For every n ≥ 1, let PATHn be the binary query:
 “given a and b, is there a path of length n from a to b along

edges from E?”
•  PATH is the binary query:
 “given a and b, is there a path from a to b along edges from E?”

Fact:
•  For every n ≥ 1, the query PATHn is expressible by a

conjunctive query. (Why?)
•  Hence, PATH is expressible by an infinite union of conjunctive

queries:
 PATH ≐ PATH1 ∪ PATH2 ∪ … ∪ PATHn ∪ …

Fare clic per modificare stile Edges, Paths, and Transitive Closure

M. Lenzerini - Introduction to databases 98

Facts: Let E be a binary relation

•  PATH is the Transitive Closure of E, i.e., the smallest binary
relation T such that
–  E ⊆ T
–  T is transitive (if (a,b) ∊ T and (b,c) ∊ T, then (a,c) ∊ T).

•  There are several well-known efficient algorithms for computing
the Transitive Closure of a given binary relation E
–  Floyd–Warshall Algorithm

•  ANCESTOR, HIGHER-MANAGER, CAN-FLY are all different
instantiations of PATH.

Fare clic per modificare stile Transitive Closure and Relational Calculus

M. Lenzerini - Introduction to databases 99

•  Question: Is there a relational algebra (relational calculus)
expression that defines ANCESTOR from PARENT? In other
words, is there a relational algebra (relational calculus)
expression that defines the Transitive Closure of a given binary
relation E?

•  Theorem: A. Aho and J. Ullman – 1979
 There is no relational algebra (or relational calculus) expression

that defines the Transitive Closure of a given binary relation E.

 Note:
 The proof of this result requires methods from mathematical

logic.

Fare clic per modificare stile Overcoming the Limitations of Relational Calculus

M. Lenzerini - Introduction to databases 100

•  Question: What is to be done to overcome the limitations of the
expressive power of relational calculus?

•  Answer 1: Embedded Relational Calculus (Embedded SQL):
–  Allow SQL commands inside a conventional programming language,

such as C, Java, etc.
–  This is an inferior solution, as it destroys the high-level character of SQL.

•  Answer 2:
–  Augment relational calculus with a high-level declarative mechanism for

recursion.
–  Conceptually, this a superior solution as it maintains the high-level

declarative character of relational calculus.

Fare clic per modificare stile Datalog

M. Lenzerini - Introduction to databases 101

•  Datalog = “Conjunctive Queries + Recursion”

•  Datalog was introduced by Chandra and Harel in 1982 and has
been studied by the research community in depth since that
time:
–  Hundreds of research papers in major database conferences
–  Numerous doctoral dissertations
–  Recent applications, even outside databases, such as:

–  Specification of network properties (Network Datalog)
–  Access control languages
–  Static program analysis (trace recursive calls)

•  SQL:1999 and subsequent versions of the SQL standard
provide support for a sublanguage of Datalog, called linear
Datalog.

Fare clic per modificare stile Datalog Syntax

M. Lenzerini - Introduction to databases 102

•  Definition: A Datalog program p is a finite set of rules each
expressing a conjunctive query

 T(x1,…,xk) :- R1(u1), …, Rn(un),
 where each variable xi occurs in the body of the rule (this way,

every rule is safe).

  Some relational symbols occurring in the heads of the rules
may also occur in the bodies of the rules of p

 (unlike the rules for conjunctive queries).
  These relational symbols are the recursive relational symbols; they are

also known as intensional database predicates (IDBs).

  The remaining relational symbols in the rules are known as the
extensional database predicates (EDBs).

  Note: The data complexity of Datalog is in PTIME.

Fare clic per modificare stile Datalog

M. Lenzerini - Introduction to databases 103

•  Example: Datalog program for Transitive Closure
 T(x,y) :- E(x,y)
 T(x,y) :- E(x,z), T(z,y)

–  E is the EDB predicate and T is the IDB predicate
–  The intuition is that the Datalog program gives a recursive

specification of the IDB predicate T in terms of the EDB E.

•  Example: Another Datalog program for Transitive
Closure

 T(x,y) :- E(x,y)
 T(x,y) :- T(x,z), T(z,y)

 (“divide and conquer” algorithm for Transitive Closure)

Fare clic per modificare stile Datalog and SQL

M. Lenzerini - Introduction to databases 104

•  SQL:99 and subsequent versions of the SQL standard provide
support for linear Datalog programs (but not for non-linear
ones)

•  Syntax:
 WITH RECURSIVE R, S, T, … AS
 <Datalog program for R, S, T, …>
 <query involving R, S, T, … >

•  Semantics:
–  Compute R, S, T, … as the semantics of
 <Datalog program for R, S, T, …>
–  The result of the previous step are temporary relation that

are then used, together with other EDBS, as if they were
stored relation (EDBs) in <query involving R, S, T, …>.

Fare clic per modificare stile Datalog and SQL

M. Lenzerini - Introduction to databases 105

Example: Give an SQL query that computes all descendants of
Noah

WITH RECURSIVE ANCESTOR(anc,desc)
(SELECT parent, child
 FROM PARENT
 UNION
 SELECT ANCESTOR.anc, PARENT.child
 FROM PARENT, ANCESTOR
 WHERE PARENT.child = ANCESTOR.anc
)
SELECT desc
FROM ANCESTOR
WHERE anc = ‘Noah’

Fare clic per modificare stile Outline

1.  The notion of database

2.  The relational model of data

3.  The relational algebra

4.  SQL

5.  The relational calculus

6.  Datalog

7.  Conclusions

M. Lenzerini - Introduction to databases 106

Fare clic per modificare stile What we did address

M. Lenzerini - Introduction to databases 107

•  What is a database

•  Organizing data according to the relational model

•  Extracting data from relational databases through
queries

•  Relationship between logic and databases
(“preciseness” is the basis for databases)

Fare clic per modificare stile What we did not address

M. Lenzerini - Introduction to databases 108

•  Database design
•  Transaction management
•  Concurrency control
•  Recovery
•  Physical database organization
•  Query processing and optimization
•  Security and privacy
•  Database programming
•  Distributed and parallel databases
•  Data integration and exchange
•  Database management in business intelligence (warehousing, mining,

ecc.)
•  Other data models (XML, graph-based, …)
•  Management of special data (temporal, spatial, scientific, …)
•  New paradigms (probabilistic data, streaming data, …)
•  New architectures for data management (NO-SQL, …)
•  ……..

Fare clic per modificare stile References

M. Lenzerini - Introduction to databases 109

•  Raghu Ramakrishnan, Johannes Gehrke, “Database
Management Systems”, McGraw-Hill Science
Engineering, 2002
 Deals with all aspects of database management (and
design)

•  Serge Abiteboul, Richard Hull, Victor Vianu,
“Foundations of databases”, Addison-Wesley, 1995
 THE database theory book

