Promise Winter School Bridging between Information Retrieval and Databases

Bressanone, Italy 4 - 8 February 2013

The Keymantic and Keyry approaches for querying relational databases

Francesco Guerra

Dipartimento di Ingegneria Enzo Ferrari University of Modena and Reggio Emilia, Italy

Keyword based searching over RDBs – recap

- Keyword-based searching is an attractive alternative to traditional
 SQL queries
- The challenges are
 - to discover the database structures that contain the keywords
 - to explore how these structures are inter-connected to form an answer
- The discovered structures and their inter-connections represent in relational terms the semantic interpretation of the keyword query
- Existing techniques typically suffer from two main limitations:
 - 1. They are **based on indexes** on the data
 - No enough attention has been paid to the inter-dependencies among the keywords

Keymantic

Keymantic

- We designed and implemented a keyword-based search engine that does not rely on the knowledge of the database instance
 - Keyword queries are translated into SQL queries
- Keymantic approach is based on
 - weights measuring the likelihood that keywords are mapped into database terms
 - an extension of the Hungarian algorithm for computing ranked mappings of keywords and database terms

Reference papers

- S. Bergamaschi, E. Domnori, F.Guerra, R. Trillo Lado, Y. Velegrakis: Keyword search over relational databases: a metadata approach. SIGMOD Conference 2011: 565-576
- S. Bergamaschi, E. Domnori, F. Guerra, M. Orsini, R. Trillo Lado, Y. Velegrakis: Keymantic: Semantic Keywordbased Searching in Data Integration Systems. PVLDB 3(2): 1637-1640 (2010)

Person						Affiliated			Depar	tment		
Name	Area	Phone	Address	Email		Professor	Departmen	It	id	DName	Address	Director
Watson	Database	(320) 4631234	30 Bloor	watson@aaa	.bb	Watson	x123		x123	CS	25 Blicker	Watson
Lenzerini	Database	(390) 6987654	Ariosto 25	lenzerini@b	bb.cc	Lenzerini	cs34		cs34	IE	15 Tribeca	Hunt
Date	Database	(817) 1937842	107 GACB	date@ccc.do	1	Date	cs34		ee67	EE	5 Charles	Date
Hunt	Inf. Syster	ns (343) 2920812	17 Helix	Hunt@ddd.e	ee	Hunt	m111		m111	ME	2 Cottle	Hunt
	Author		Publica	ation		(Database	Σ		a	5 D	-
		Publication	Title		Year	Resource	Name	Ad	dress]
	Lenzerini I	Data Integration	Data In	Data Integration		ACM DL	DBLP	http	p://www.informatik.		k.uni-trier.de	
	Date	Foundation Matters	Founda	Foundation Matters		DBLP	ACM DL	http	o://porta	l.acm.org/	dl.cfm	

- > The first problem is to decide **what** role each keyword plays in the query
 - Is it a value?
 - Does it describe some meta-information?
- Let "Date Database" be a keyword query posed over this database
- Both keywords are values:
 - Date → dom(Person.Name) and Database → dom(Person.Area)
- One keyword is a value, the other is meta-information
 - Date -> Author.Name and Database -> Database ->

Motivating example (2)

Person									Affiliated				Department				
Name	Area		Phone	Add	ress	Email		Γ	Professor	Dej	partmen	t	id	DName	Address	Director	
Watson	Database	9	(320) 4631234	30 B	loor	watson@aaa.bb		Ī	Watson	x12	x123		x123	CS	25 Blicker	Watson	
Lenzerini	Database	e	(390) 6987654	Ario	sto 25	lenzerini@bbb.c		Ī	Lenzerini	cs3	4		cs34	IE	15 Tribeca	Hunt	
Date	Database	e	(817) 1937842	107 0	GACB	B date@ccc.dd		Ī	Date	cs3	4		ee67	EE	5 Charles	Date	
Hunt	Inf. Syst	ems	(343) 2920812	17 H	[elix	Hunt@ddd.e	e	Ī	Hunt	m1	11		m111	ME	2 Cottle	Hunt	
1	Author				Publica	ation				Da	tabase	32		a			
	Name	Pub	lication	ΙΓ	Title		Year	1	Resource	Na	me	Ad	ddress			7	
	Lenzerini	Data	a Integration		Data Integration		2002	ł	ACM DL	DB	BLP	htt	p://www.	.informati	k.uni-trier.de		
1	Date	Fou	ndation Matters		-		2002	Ι	DBLP	AC	CM DL	htt	nttp://portal.acm.org/dl.cfm				

- The second problem is to decide which part of the database actually models the intended keyword meaning
 - Configuration: an injective mapping from the keywords into the database terms, i.e. relation and attributes names, attribute domains

Consider the keyword query "Director Watson Address"

Director Watson Address

- Director → Department.Director Watson → dom(Department.Director) Address →
 Department.Address
- 2. Director → Department.Director Watson → dom(Department.Director) Address → Person.Address
- 3. Director → Department.Director Watson → dom(Department.Address) Address → Person.Address

Motivating example (3)

									A ffiliated							
							Armateu									
Name	Area		Phone	Ad	dress	Email			Professor		Departmei	nt	id	DName	Address	Director
Watson	Database	2	(320) 4631234	301	Bloor	watson@aaa	a.bb	ľ	Watson		x123		x123	CS	25 Blicker	Watson
Lenzerini	Database	2	(390) 6987654	Ari	osto 25	lenzerini@b	bb.cc	t	Lenzerini		cs34		cs34	IE	15 Tribeca	Hunt
Date	Database		(817) 1937842	107	GACB	date@ccc.do	d	t	Date	1	cs34		ee67	EE	5 Charles	Date
Hunt	Inf. Syste	ems	(343) 2920812	17]	Helix	Hunt@ddd.e	ee	t	Hunt		m111		m111	ME	2 Cottle	Hunt
A	Author	8			Public	ation					Database	20.8		4 (d)		
I	Name	Pub	lication		Title		Year]	Resource		Name	Address			7	
Ι	enzerini	Data	a Integration		Data Integration		2002	1	ACM DL		DBLP	http://www.informatik.uni-tri		.uni-trier.de		
Ι	Date	Fou	ndation Matters		Founda	ation Matters	2002]	DBLP		ACM DL	http	://portal	.acm.org/o	ll.cfm]

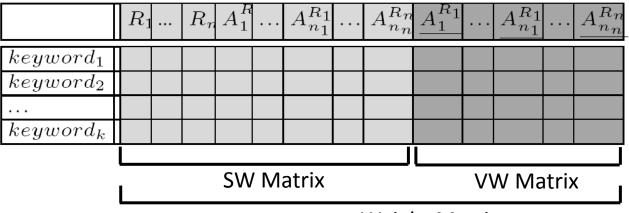
- Answering a query requires to decide how the selected database terms relate to each other
 - Two database terms may be connected by multiple join paths, thus leading to different interpretations
- Interpretation of a keyword query using a configuration is an SQL query where the select, from, where clauses are formulated with the configuration

Email CS

- 1. Department, Person
 - to find the email of the CS department Director
- 2. Department, Affiliated, Person
 - to find emails of the CS affiliated persons

From Keywords to Queries

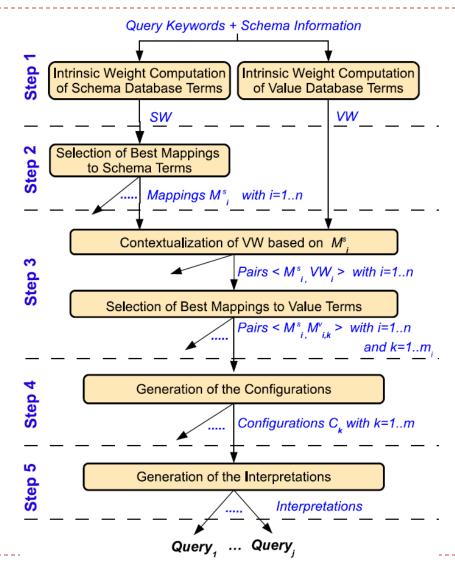
• Weights may measure the relativeness of a keyword to a database term:



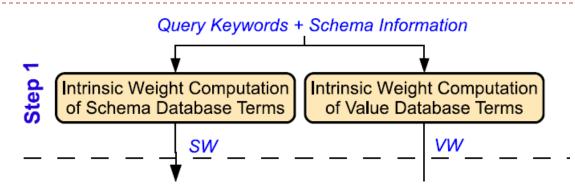
Weight Matrix

- The problem is known as Bipartite Weighted Assignements, but usual solutions
 - 1. do not consider any interdependencies between the partial associations
 - Intrinsic: measures the likelihood that a keyword should be mapped into a database term in isolation
 - **Contextual**: measures the relativeness of a keyword to a database term by taking into account the mappings of other keywords into database terms
 - 2. provide only the best mapping, instead of a ranked list based on the scores
 - we have extended the Hungarian algorithm

From keywords to queries, the process



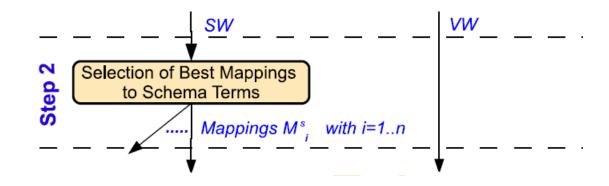
Step 1 – Intrinsic Weight Computation



- We exploit similarity techniques based on structural and lexical knowledge
 - extracted from the data source,
 - based on external knowledge, e.g., ontologies, vocabularies, domain, ...
- The techniques include:

	Schema Weights	Value Weights
Syntactic techniques	similarity measures based on edit distances,	Regular expressions
Semantic techniques	Lexical analysis	Data types, google similarity,

Step 2 Selection of the Best Mappings to schema terms



- We consider first the prominent mappings of keywords to schema terms.
 - A series of mappings , M_1^S , M_2^S ,..., M_n^S , of keywords to schema terms are generated
 - > The mappings are partial, i.e., not all the keywords are mapped to some schema term
 - > The unmapped keywords are considered for mapping to value database terms.

How to find configurations: the extended Hungarian algorithm

- The execution of the algorithm consists of a series of iterative steps that generate a mapping with a maximum score.
- In our approach
 - Once a keyword is associated to a database term, the weight in the matrix are modified in order to take into account the mapping
 - Once a complete configuration is computed
 - the weight matrix is modified to exclude the computation of the same mapping again
 - ▶ the process continues to compute the mapping with the second largest score, etc.

How to find configurations: the extended Hungarian algorithm

	<u>P.N</u>	<u>P.A</u>	<u>P.P</u>	P.Ad	<u>P.E</u>	<u>D.I</u>	<u>D.D</u>	<u>D.A</u>	<u>D.Di</u>
CS	- 30	18	0	18	0	50	75	50	50
Hopkins	45	- 30	0	35	10	32	40	35	39
Mary	46	20	0	5	7	20	25	30	40
Summerhill	10	7	0	34	22	20	10	32	15

- The maximum weight of each row is first identified and characterized as maximum
 - If the maximum weights are all located in different columns, then a mapping is generated
 - if there is a column containing more than one weight characterized as maximum, all maximums in the column except the one with the maximum value loose their characterization as maximum.

How to find configurations: the extended Hungarian algorithm

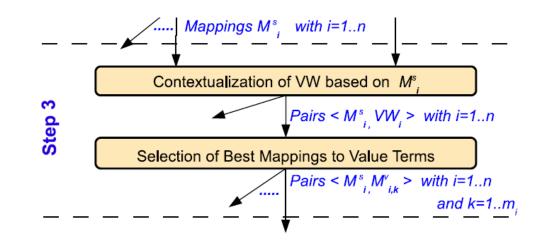
	<u>P.N</u>	<u>P.A</u>	<u>P.P</u>	<u>P.Ad</u>	<u>P.E</u>	<u>D.I</u>	<u>D.D</u>	<u>D.A</u>	<u>D.Di</u>
CS	30	18	0	18	0	50	75	50	50
Hopkins	45	30	0	35	10	32	40	35	39
Mary	46	20	0	5	7	20	25	30	40
Summerhill	10	7	0	34	22	20	10	32	15

The values of the weights in these rows are then updated according to a number of contextual weights

	<u>P.N</u>	<u>P.A</u>	<u>P.P</u>	<u>P.Ad</u>	<u>P.E</u>	<u>D.I</u>	<u>D.D</u>	<u>D.A</u>	D.Di
CS	30	18	0	18	0	50	75	50	50
Hopkins	\rightarrow	34	0	39	14	34	$\mathbf{\times}$	37 (41
Mary	50	24	0	9	11	22	27	32	42
Summerhill	14	11	0	38	26	22	12	34	17

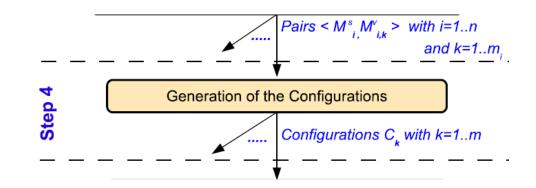
	<u>P.N</u>	<u>P.A</u>	<u>P.P</u>	<u>P.Ad</u>	<u>P.E</u>	<u>D.I</u>	<u>D.D</u>	<u>D.A</u>	<u>D.Di</u>
CS	- 30	18	0	18	0	50	75	50	50
Hopkins	49	34	0	39	14	34	42	37	41
Mary	50	24	0	9	11	22	27	32	42
Summerhill	14	11	0	38	26	22	12	34	17

Step 3 Selection of the Best Mappings to Value terms



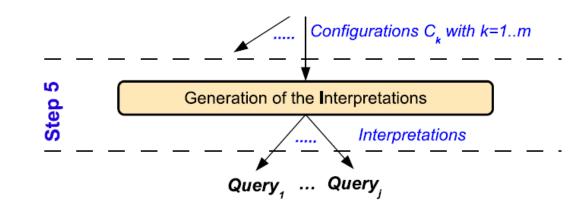
- For each partial mapping M_i^S , the mappings of the remaining unmapped keywords to value terms needs to be decided.
 - 1. Contextualization of the VW sub-matrix: the VW submatrix is updated to reflect the added value provided by the mappings in M_i^S
 - 2. Selection of the Best Mappings by using the adapted Hungarian algorithm
- The result is a series of partial mappings $M_{i,k}^V$

Step 4 – Generation of the Configurations



- A configuration C_{ik} is formed for each pair of a mapping $M_{i,k}^V$ together with its associated mapping M_i^S
- > The score of the configuration is the sum of the scores of the two mappings

Step 5 – Generation of the interpretations



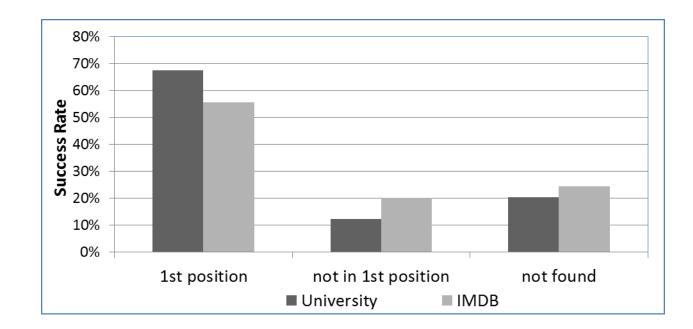
- Different join paths among these terms results in multiple interpretations
 - Several strategies can be used to further rank the selections
 - Length of the join path, ...
- We compute a query for every alternative join path

Evaluation

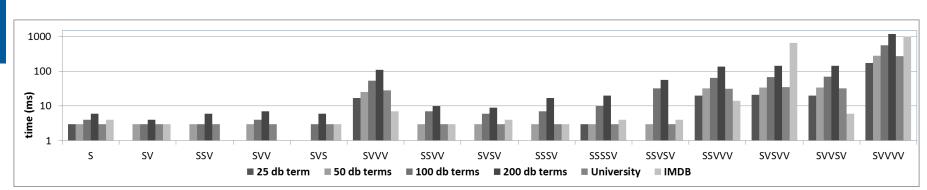
We selected for our experiments two real data sets.

- a university database
- a fraction of the IMDB database
- > 29 real users were asked to provide a set of keyword queries
- A database expert translated each keyword query into SQL.
- We used a total of 99 and 44 queries for the university and the IMDB database, respectively.

Evaluation - Effectiveness



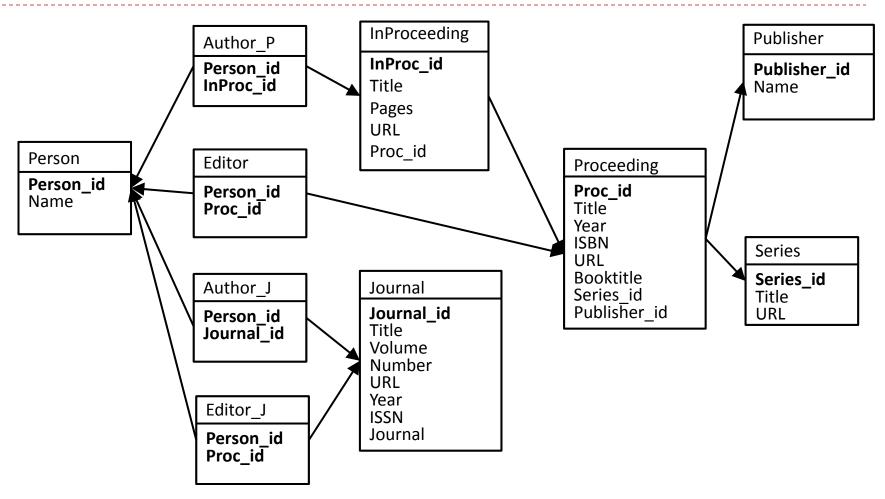
Evaluation - Efficiency



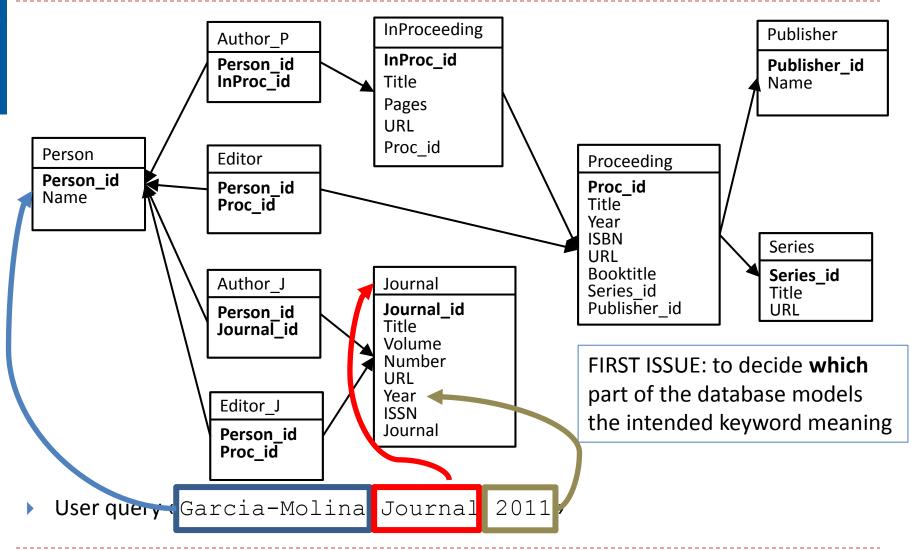
- The response time increases with the number of keywords
 - when there is a prevalence of keywords mapped to schema terms this increase is not dramatic.
- We did not report the time needed to actually evaluate the interpretations to avoid having the query engine performance blurring the results

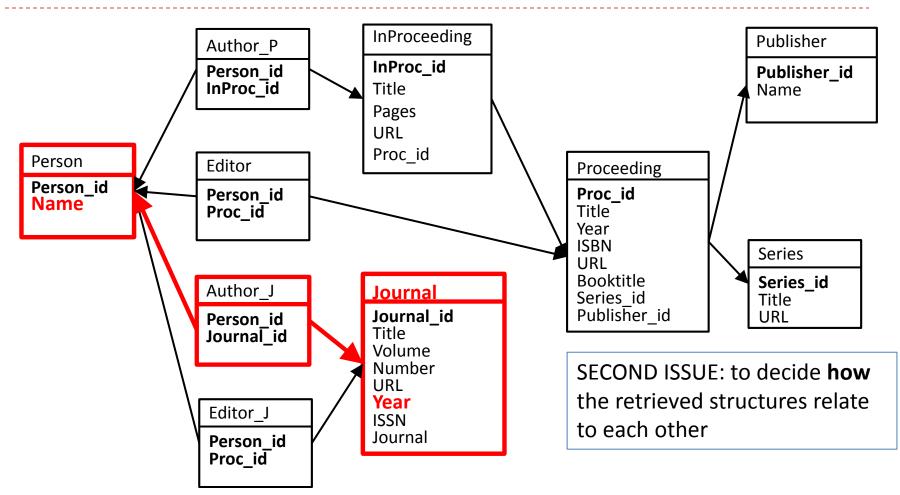
Our approach

- KEYRY is based on
 - a Hidden Markov Model for mapping the user keywords into database terms
 - > a method for providing a parameter setting not relying on any training data
 - heuristics rules, similarity measures and a variation of the HITS algorithm
- Reference papers
 - Sonia Bergamaschi, Francesco Guerra, Silvia Rota, Yannis Velegrakis: A Hidden Markov Model Approach to Keyword-Based Search over Relational Databases. ER 2011: 411-420S.
 - Silvia Rota, Sonia Bergamaschi, Francesco Guerra: The list Viterbi training algorithm and its application to keyword search over databases. CIKM 2011: 1601-1606



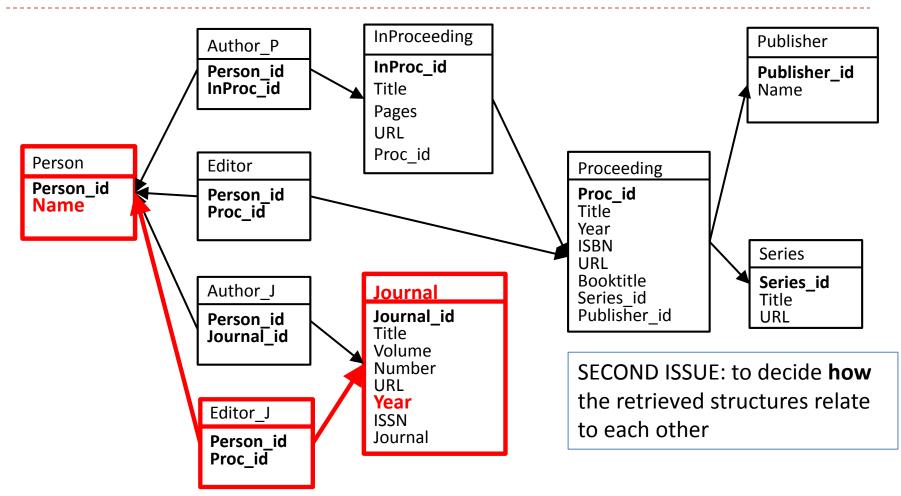
User query «Garcia-Molina Journal 2011»





- User query «Garcia-Molina Journal 2011»
- Journals where Garcia Molina was an author in 2011

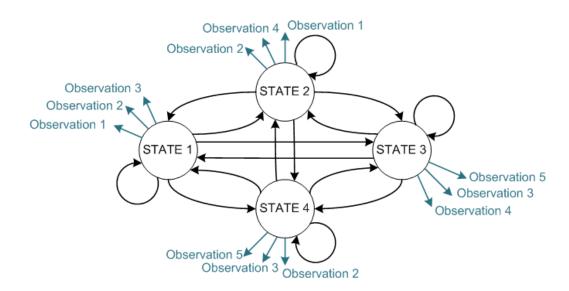
25



- User query «Garcia-Molina Journal 2011»
- Journals where Garcia Molina was an editor in 2011

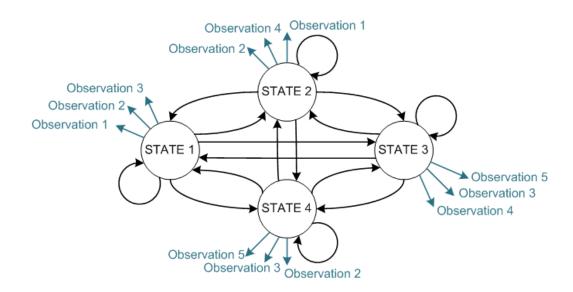
26

Hidden Markov Models



- A HMM can be used to address these problems:
 - Prediction: Given a Hidden Markov Model λ and a sequence of observations O, we would like to find out the state sequence which has the highest probability of generating O
 - Training: Given a training set of observation sequences O, we would like to learn the model A that maximizes the probability of generating O
 Heuristic Rules

Modeling keyword search with a HMM



- HMMs are parametric models, and the parameters are:
 - N = number of states
 - Π = initial state probabilities
 - A = transition probability matrix N x N
 - B = emission probability for each state

- Mapping keywords to database elements:
 - keywords are the observable sequence O
 - the database elements are the hidden states to be inferred
- How do we calculate the HMM parameters?
 - N = || database vocabulary ||
 - ▶ $\Pi \rightarrow$ HITS algorithm
 - A \rightarrow heuristic rules
 - $B \rightarrow$ similarity measures

Number of states

N = || database vocabulary ||

Database vocabulary: the set of all the names of the tables, the attributes, and all the domains of the database.

- Heuristic rules based on the semantic relationships existing between the database terms (aggregation and generalization inferred by foreign key constraints)
 - the transition probability values decreases with the distance of the states.
 - Higher probabilities are associated to:
 - transitions to elements inside the same table
 - transitions between elements in tables connected through foreign keys

- The database vocabulary is composed of schema and domain elements.
- For schema elements:
 - Similarity measures
 - similarity value = P(schema element | keyword)
 - the Bayes theorem to calculate P(keyword | schema element), which is the emission probability
- For domain elements:
 - data types/ regular expressions/Google similarity to calculate the similarity of keywords and domains

- We use an adaptation of the HITS algorithm.
 - the HITS algorithm is a link analysis algorithm used to rank web pages.
 - the algorithm calculates two rank values for each state: hub and authority.
 - a state is a good hub if it links to many good authority states, and a good authority is a state linked by many good hubs.
 - we take into account the number of attributes minus the number of foreign keys in a table

Prediction

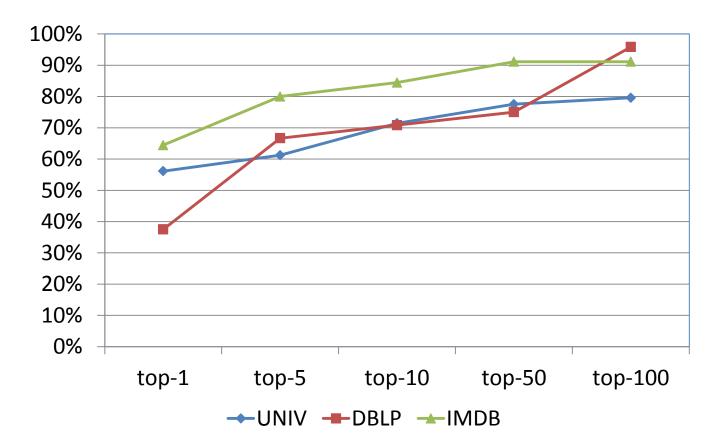
- Given a HMM and a sequence of observations we use the List Viterbi algorithm to predict which are the best correspondent top-k state sequences, i.e. the database terms.
- The algorithm, which is a dynamic programming procedure, makes the following assumptions:
 - both the observations and the states must be in a sequence
 - a single element in the observation needs to correspond to exactly one state
 - computing the most likely state sequence up to a certain point t must depend only on the observed element at point t, and the most likely state at point t – 1

Evaluation

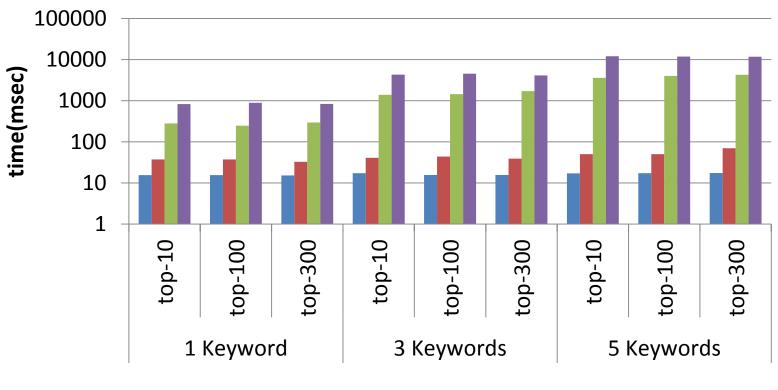
• We selected for our experiments three real data sets.

- a university database
- a fraction of the IMDB database
- a fraction of the DBLP database
- > 29 real users were asked to provide a set of keyword queries.
- A database expert translated each keyword query into a configuration.
- We used a total of 99, 44 and 30 queries for the university, the IMDB, and the DBLP database.

Evaluation - Effectiveness

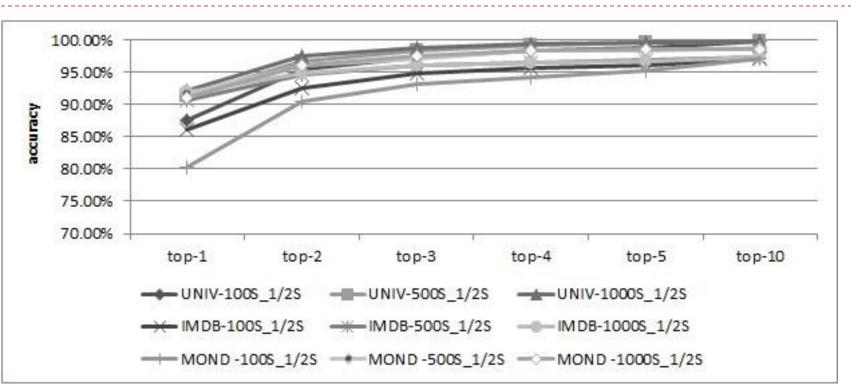


Evaluation - Efficiency



DBLP (66 db terms) UNIV (106 db terms) IMDB (199 db terms) 350 db terms

Effectiveness with a training dataset



Typical Expectation-Maximization approach extended

It bases the expectation step on the List Viterbi algorithm

 Silvia Rota, Sonia Bergamaschi, Francesco Guerra: The list Viterbi training algorithm and its application to keyword search over databases. CIKM 2011: 1601-1606

Convergence of the training algorithm

